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Preface

INTRODUCTION TO THE INTERNATIONAL
ENERGY AGENCY

BACKGROUND

The International Energy Agency (IEA) was established in 1974 as an autonomous agency within
the framework of the Economic Cooperation and Development (OCDE) to carry out a comprehensive
program of energy cooperation among its 25 member countries and the Commission of the European
Communities.

An important part of the Agency’s program involves collaboration in the research, development
and demonstration of new energy technologies to reduce excessive reliance on imported oil, increase
long-term energy security and reduce greenhouse gas emissions. The IEA’s R&D activities are headed
by the Committee on Energy Research and Technology (CERT) and supported by a small Secretariat
staff, headquartered in Paris. In addition, three Working Parties are charged with monitoring the
various collaborative energy agreements, identifying new areas for cooperation and advising the
CERT on policy matters.

Collaborative programs in the various energy technology areas are conducted under
Implementing Agreements, which are signed by contracting parts (government agencies or entities
designated by them). There are currently 42 Implementing Agreements covering fossil fuel
technologies, renewable energy technologies, efficient energy end-use technologies, nuclear fusion
science and technology, and energy technology information centers.

SOLAR HEATING AND COOLING PROGRAM

The Solar Heating and Cooling program was one of the first IEA Implementing Agreements to be
established. Since 1977, its 21 members have been collaborating to advance active solar, passive solar
and photovoltaic technologies and their application in buildings.

The members are:

Australia Finland Norway

Austria France Portugal
Belgium Italy Spain

Canada Japan Sweden
Denmark Mexico Switzerland
European Commission Netherlands United Kingdom
Germany New Zealand United States

A total of 30 Tasks have been initiated, 21 of which have been completed. Each Task is managed by
an Operating Agent from one of the participating countries. Overall control of the program rests with
an Executive Committee comprised of one representative from each contracting party to the



Implementing Agreement. In addition, a number of special ad hoc activities - working groups,
conferences and workshops - have been organised.

The Tasks of the IEA Solar Heating and Cooling Programme, both completed and current, are as
follows:

Completed Tasks
Task 1 Investigation of the Performance of Solar Heating and Cooling Systems
Task 2 Coordination of Solar Heating and Cooling R&D
Task 3 Performance Testing of Solar Collectors
Task 4 Development of an Insolation Handbook and Instrument Package
Task 5 Use of Existing Meteorological Information for Solar Energy Application
Task 6 Performance of Solar Systems Using Evacuated Solar Collectors
Task 7 Central Solar Heating Plants with Seasonal Storage
Task 8 Passive and Hybrid Solar Low Energy Buildings
Task 9 Solar Radiation and Pyranometry Studies
Task 10 Solar Materials R&D
Task 11 Passive and Hybrid Solar Commercial Buildings
Task 12 Building Energy Analysis and Design Tools for Solar Applications
Task 13 Advance Solar Low Energy Buildings
Task 14 Advanced Active Solar Energy Systems
Task 16 Photovoltaics in Buildings
Task 17 Measuring and Modelling Spectral Radiation
Task 18 Advanced Glazing and Associated Materials for Solar and Building
Applications
Task 19 Solar Air Systems
Task 20 Solar Energy in Buildings Renovation
Task 21 Daylight in Buildings
Task 23 Optimisation of Solar Energy Use in Large Buildings

Completed Working Groups
CSHPSS
ISOLDE
Materials in Solar Thermal Collectors
Evaluation of Task 13 Houses

Current Tasks

Task 22 Building Energy Analysis Tools
Task 24 Solar Procurement
Task 25 Solar Assisted Cooling Systems for Air Conditioning of Buildings
Task 26 Solar Combisystems
Task 27 Performance of Solar Fagade Components
Task 28 Solar Sustainable House
Task 29 Solar Crop Drying
Task 31 Daylighting Buildings in the 215t Century
Task 32 Advanced Storage Concepts for Solar Thermal Systems in Low Energy
Buildings (Task Definition Phase)
Task 33 Solar Heat for Industrial Process (Task Definition Phase)
Current Working Groups

PV /Thermal Systems



TASK 22 : BUILDING ENERGY ANALYSIS TOOLS

Goal and Objectives of the task

The overall goal of the task 22 is to establish a sound technical basis for analysing solar, low-
energy buildings with available and emerging energy analysis tools. This goal will be pursued by
accomplishing the following objectives:

— Assess the accuracy of available building energy analysis tools in predicting the
performance of widely used solar and energy efficiency concepts;

— Collect and document engineering models of widely used solar and low-energy concepts
for use in the next generation building energy analysis tools; and

— Assess and document the impact (value) of improved building analysis tools in analysing
solar, low-energy buildings, and widely disseminate research results tools, industry
associations and government agencies.

Scope of the task

This Task will investigate the availability and accuracy of building energy analysis tools and
engineering models to evaluate the performance of solar and low-energy buildings. The scope of the
Task is limited to whole building energy analysis tools, including emerging modular type tools, and
to widely used solar and low-energy design concepts. Tool evaluation activities will include
analytical, comparative and empirical methods, with emphasis given to blind empirical validation
using measured data from test rooms or full scale buildings. Documentation of engineering models
will use existing standard reporting formats and procedures. The impact of improved building energy
analysis tools will be assessed from a building owner perspective.

The audience for the results of the Task is building energy analysis tool developers. However, tool
users, such as architects, engineers, energy consultants, product manufacturers, and building owners
and managers, are the ultimate beneficiaries of the research, and will be informed through targeted
reports and articles.

Means

In order to accomplish the stated goal and objectives, the Participants will carry out research in the
framework of two Subtasks:

Subtask A: Tool evaluation

Subtask B: Model Documentation

Participants

The participants in the Task are: Finland, France, Germany, Spain, Sweden, Switzerland, United
Kingdom, and United States. The United States serves as Operating Agent for this Task, with Michael
Holtz of Architectural Energy Corporation providing Operating Agent services on behalf the U.S.
Department of Energy.

This report includes works carried out under the Subtask A.3, Empirical Validation.
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Chapter 1

MODEL VALIDATION MEANINGS
AND STATE-OF-THE-ART

The word “validation” is often misunderstood and has certainly been used in different senses in
the past. First section in this chapter includes a structured discussion on the different model
validation meanings, from conceptual models validation to empirical operational models
validation. Our attention is then focussed on empirical model validation. A state of the art in this
matter is presented in the last section.

1.1. MODEL VALIDATION MEANINGS

Modelling environments and simulation codes have been used for building thermal analysis for
many decades now. Many simulation programs have over the years been checked to some extent, and
it is not uncommon for the developers to claim that they have “validated” them. The word
“validation” is often misunderstood and has certainly been used in different senses in the past. It is
often taken to mean a once and for all time check of the absolute accuracy of a program. In practice,
the thermal performance of a building is dependent on a very large number of parameters. It would
be quite impossible to test all feasible combinations of these parameters in order to ensure that the
model/program is correct, even if the true building performance was known.

Although it is not possible to validate a model or a simulation code for all kinds of applications,
correct and carefully performed validation will increase confidence in both. It may also give an
indication of their reliability, at least for more common cases. In addition, validation plays a dual role
for the modeller: firstly, as a modelling aid, guiding the choice of an effective model structure and
associated numerical values with respect to the model specific utilisation; and secondly, as an aid to
model reuse, by simplifying access to models by a third party.

Different studies have been carried out in the past with the attempt to establish a methodology for
model validation. The first study, undertaken by the US Solar Energy Research Institute [1] had
resulted in a three part methodology including analytical tests, inter-model comparisons, and
empirical validation. This methodology has further been refined and extended in the second study
carried out by four British research teams - the University of Nottingham, Leicester Polytechnic, the
Rutherford Appleton Laboratory and the Building Research Establishment [2]. The methodology
comprises: theory and source code checking, analytical tests, inter-model comparison, sensitivity
analysis, and empirical validation. This was the methodology reviewed and accepted at the
commencement of the CEC Concerted Action PASSYS [3]. In the second phase of PASSYS main
emphasis was devoted to empirical model validation. The complete description of the resulting
methodology can be found in [4] and more condensed in [5, 6].

A better understanding on what model validation involves can be obtained using the
“semiological grid” proposed in [7] as a tentative conceptual tool for an efficient and useful
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description of the modelling process. The “semiological grid” (see Fig. 1.1) is a five layer structure
(worlds) describing the main phases of a model development process:

— Technical world. It is ordinarily here that system is conceptualised, where appearances of
reality are symbolised. For instance, in a project building, this is where components, identifiers
and technical questions to be answer have to be specified.

— Physical world. It is a theoretical layer dealing with physics, where the previous technical
description is translated into a physical one. It is here that the scale of the analysis, the physical
phenomena taking place in the system, the laws governing them and the constitutive materials
laws, etc. has to be specified.

— Mathematical world. We step down to a more rigorous mathematical formulation. Equations
governing the space-time evolution of the system state have to be written. A qualitative
understanding of the processes, relations and structures involved is now accessible.

— Numerical world. This layer is devoted to computation methods allowing numerical solutions
of the problem, especially when analytical solutions are not available. It is a very specific world,
half between mathematics and computers, which was for a long time considered as a sub-layer
of the previous one.

— Computer world. The output of the deepest layer is a computerised model allowing
simulations, data production in general.

Reality

Technical Conceptual

Validation
Physical
Empirical
Conceptual pIric
Mo§e1 v Mathematical Validation
. Model
Numerical Verification
Computerised Computing

Model v

Figure 1.1. Main stages in model credibility assessment.

Going from reality to a conceptual model (see Fig.1.1) means stepping down from the technical
world to the mathematical one. Similarly, translating the conceptual model into a computerised one,
implies to move down from the mathematical world to the computing one.

According to the five layers structure before (see Fig.1.1), three main stages in models credibility
assessment can be recognised:

— Conceptual Model Validation. Analysis of the adequacy of the conceptual model to provide a
“reasonable” representation of the system for the intended use of the model. This process is
usually accomplished by analysis and review of the theories and assumptions underlying the
conceptual model. It mainly tests the coherence between the conceptual model and the image of
reality the modeller has, that is, the passage from the technical to the mathematical world.

— Computerised Model Verification. Substantiation that the computerised model represents the
conceptual model within specified limits of accuracy. In essence, model verification is for
insuring that the computer programming and implementation of the conceptual model is
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correct. Computer scientists have been devoting a great deal of effort to develop design and
management techniques that minimise coding errors (e.g. structured programming, top-down
design, chief programming, etc.). Recently, rigorous (formal) design and implementation
techniques allow for program correctness proof [8]. Analytical test and inter-model
comparisons are also applied at this stage, as well as special simulation based tests as the ones
described in [9].

— Empirical Operational Model Validation. Empirical validation should in principle compare a
true model derived from experiments with a computerised model. It is not, as analytical
validation, limited to isolated processes in simple constructions, but deals with real world
complexity comparable to situations as encountered when the simulation code is used in design
studies. Empirical validation is, therefore, the most widely used technique for validating
transient simulation programs. Beyond any technical consideration, it provides a guarantee of
users confidence, and enables the modeller to improve his understanding on the system he is
modelling and to improve the model itself. However, it involves experiments, with the risk that
the question regarding the reliability of the predictions cannot be answered due to the un-
reliability of the measurements.

Model assessment should be performed throughout the model development process. In this way,
the risk of observing model deficiencies due to an improperly conceptual model implementation
should be negligible when performing empirical model validation, the measurements/simulations
differences reflecting essentially the conceptual model inadequacy.

We will focus our attention on empirical validation, whose aim is two-fold:

— Checking model validity. Firstly, one needs to detect if the model is capable of describing the
reality correctly, that is, to check whether the analysed model satisfies some a priori validation
criteria.

— Modelling errors diagnosis. Secondly, the causes of the observed discrepancies between
measured and predicted values must be identified in order to indicate how to improve the
analysed model, if required.

This is, however, a non-trivial task to perform, as it requires expertise in experimental design,
modelling principles and simulations techniques, as well as in special mathematical methods
involving sensitivity analysis, identification techniques, spectral analysis, and so on.

1.2. STATE OF THE ART IN EMPIRICAL MODEL VALIDATION

Comparison between measured and predicted values has often been performed in a very
subjective way by e.g. comparing a curve showing the measured values with a curve showing the
predicted values and then by looking at this, stating whether the agreement is satisfactory or not. This
kind of comparison gives only little information on model validity and on what may cause deviations
between measurements and predictions. It is necessary to apply more sophisticated techniques in
order to increase the quality and the confidence in the validation result and to obtain valuable
information about the model.

Several mathematical techniques exist for comparison between measured and predicted values,
testing the goodness of different aspects of the model and trying to identify the causes of
unsatisfactory model behaviour.

Checking model validity

The most commonly used validation criterion is the verification of whether model/data
discrepancy is smaller than a threshold taking into account of measurements noise and model input
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data uncertainties. It implies the estimation of the so called “overall uncertainty bands”, which are a
measure of the influence that the variations in the model parameters have on the model outputs.
Three kinds of sensitivity analysis techniques have been used in the past to estimate them: differential
sensitivity analysis, Monte Carlo methods, and stochastic sensitivity analysis. See e.g. [10] for an
analysis of their corresponding advantages and drawbacks.

The agreement between simulations and measurements is stated to be good if the measured values
fit within the overall uncertainty bands. The advantage of this method is that it is very clear when
good agreement is obtained, the disadvantage is that it only compare measurements and simulations
in the low frequency area (daily or less). It does not test the highly dynamic behaviour (hourly) of the
model.

Within the CEC funded PASSYS program, some frequency domain analyses on the residuals
(differences between measurements and simulations) were proposed in order to establish a validation
criterion for the dynamic behaviour. The most interesting one is based on the analysis of the residuals
density power spectrum. This statistic represents the residuals variance distribution over frequencies.
It shows in which frequency ranges the problems in the model mainly appear. When compared with
the so called ”qualifying density power spectrum”, which represents the allowed upper bound for the
residuals density power spectrum, frequency areas where the model shows an unsatisfactory
behaviour are revealed. However a reliable validation criterion should encompass both a measure of
the measurements noise and a measure of the model expected accuracy including model input data
uncertainty.

Modelling errors diagnosis

Two significant techniques using linear analysis tools have been proposed in the past for
diagnostic purposes.

The first one consist in a direct comparison of the system global physical parameters (first time
constant and static gains) estimated from measurements with the ones calculated by means of the
analysed model [4, 11]. To obtain such information from experimental data, identification techniques
can be applied. A dynamic linear model, in state space form [4] or in a black-box form [11], is
identified on data, and then reduced to its characteristic time constant and its static gains. To get such
information from the “knowledge” model the use of spectral decomposition techniques has been
proposed in [11], and a different technique based on simulations in [4].

The second technique deals with residuals analysis and was first proposed in [5]. Because model
simulation aims at reproducing the effect of the external influences that drive the experiment, one
expects a part of the residuals to be sensitive to these inputs. Hence, the proposed technique seeks to
quantify the contribution of each input to the residuals. Such information helps modellers to sort the
inputs and to target the one responsible of the major part of the error. Efforts to improve the model
should then focus the way model takes into account this particular input.

The technique proposed in [4, 5] is based on residuals non-parametric spectral analysis. The
contribution of each input to the residuals is analysed by means of the squared partial coherence

functions. The squared partial coherence for the i th input is a normalised measure at frequency @ of
the linear cross-correlation existing between residuals and input i after allowance is made for the
effect of the other input variables. It takes values from 0 to 1. Zero values mean that no correlation

exists between the i input and the residuals, unity values mean that residuals could be completely
recovered from this input, and values between 0 and 1 correspond to situations where residuals can

be partially predicted from the i th input. Such information helps modellers to sort the inputs and to
target the one responsible of the major part of the error over a given frequency area. This is the
method reviewed and accepted in [12, 13], where spectra and partial coherence functions are
simultaneously used to quantify the contribution of each model input to the residuals variance.
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The technique proposed in [14] is slightly different, although it also deals with residuals analysis.
A dynamic linear and stationary MISO (Multiple Inputs Single Output) model is identified on the
residuals/input data. Such model is intended to predict the residuals time evolution, and it is then
used to estimate the contribution of each model input to the total variance of the residuals. This error
disaggregating technique, dealing with the total residuals variance, does not allow separating time-
scales (frequency ranges). It does not provide so rich information than the previous ones.

Residuals analysis techniques have been widely used in the 90’s, especially in the framework of a
British-French collaboration - the Building Research Establishment and Electricité de France.
Although they revealed capable of diagnosing some of the modelling errors, the authors believe them
to suffer some limitations. The main important ones are:

— They are based on linear analysis tools. Hence, they cannot be applied for non-linear models
studies.

— They can be qualified as black-box approximations to the diagnosis for they are mainly based
on the analysis of the causal relationships between the residuals and the model inputs. Any
direct information is supplied concerning the modelling hypothesis to be reviewed and the
parts to be modified. Frequently, no indications on how to improve models are given by means
of residuals analysis. For instance, which parts in a test cells model must be modified when a
strong coherence has been detected between the outdoor temperature and the residuals:
thermal bridges, convective coefficients, indoor air stratification hypothesis, etc.? Residuals
analysis brings any answer about.

These limitations lead us to propose another kind of approach for models diagnostic purposes. It is
based on the analysis of the correlation existing between the different model parameters and the
residuals observed. The aim of the method is to identify the amplitude of variations in parameters
allowing significant residuals reduction. The comparisons of such results with the knowledge we
have about the actual system and the modelling hypothesis will help us to know the reasons of the
observed modelling errors, and to propose model improvements.






Chapter 2

INTERNATIONAL ENERGY AGENCY EMPIRICAL
MODEL VALIDATION APPROACH : THEORY AND
COMPUTER IMPLEMENTATION

The methodology and the underlying methods we are proposing for empirical model validation
purposes are presented in this chapter. It first includes a general overview of the methodology,
from checking model validity to diagnosis. Thermal models for buildings are presented in the
second section, as well as measurements and uncertainty matters. The third section describes the
mathematical tools that have been chosen for testing the model validity. Our main contribution
however concerns diagnosis. A new approach based on the model parameter space analysis has
been developed. It is described in the two next sections. A simple example of application is
presented and discussed in the last by one section and last section includes some computer
implementation matters.

2.1. GENERAL OVERVIEW OF THE METHODOLOGY

As pointed out in the previous chapter, the aim of empirical validation is two-fold. Firstly, it
intends to test the model performances by identification of significant disagreements between
measurements and simulations (checking model validity). Secondly, it tries to explain such
disagreements (model diagnosis). This means going up from the observed differences between
simulations and measurements to the modelling hypothesis that must be modified to improve the
model.

Checking model validity

Testing model validity is based on comparisons between simulations and measurements. Different
studies have been carried out in the past with the attempt to establish methods for rigorous model
validity test. In the framework of the IEA Task 22, checking model validity involves:

— A systematic analysis of the residuals comprising non-stationary patterns detection, mean and
standard deviation calculation and spectral density function analysis.

— A comparison between measurements and simulations that takes into account both the
measurements noise and the model input data uncertainties. The agreement between model
and reality is stated to be good when a significant overlapping is observed between
simulations and measurements uncertainty bands. This is today a standard way for
model/data comparisons (cf. [10, 4]).
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The estimation of the spectral domain of application of the model. It defines the frequency

ranges of excitation where no significant differences between model simulations and
measurements are expected.

Model diagnosis

The diagnosis approach we are proposing is based on the analysis of the model parameters space.
The main objective is to identify the changes in parameters values that are required for a significant
model behaviour improvement. Diagnosis is then provided by comparison of such results with the
knowledge we have about both the actual system and the model itself.

As stated before, residuals analysis aims to target the model inputs responsible of the major part of
the differences measures/simulations observed. Contrary to such techniques, parameter space
analysis focuses its attention on physical phenomena and modelling hypothesis. It must be noticed
that parameters are the elements of a computerized model that are closest to the represented physical
phenomena, as well as to the assumed modelling hypothesis. Consequently, it is expected that this
new approach supplies better information for diagnosis than residuals analysis. In addition, it can be
applied to both linear and non-linear models.

Two main stages can be recognized in the methodology that we are proposing (see Fig. 2.1):

(@)

Active model parameters identification and preliminary diagnosis. This is a preliminary and
fundamental step toward diagnosis. It aims to identify the physical phenomena and the parts
of the model that can be really tested on the available experimental data. As it is shown later
(section 2.2), sensitivity analysis is the main mathematical tool for this purpose. It involves: a)
calculation of the model outputs sensitivity to every model parameter; b) active model
parameters identification and correlation analysis; and c) sensitivities principal components
analysis.

Active model parameters are those to which model outputs are sensitive enough. They are
related to the mathematical representation of the dominant parts and phenomena in the
model. Unfortunately, active model parameters are often correlated among each other. Such
correlations introduce some additional limitations for validation purposes as well as some
ambiguities for diagnosis. Generally, active model parameters must be grouped and validation
and diagnosis conclusions will only refer to such groups. There is no way of making
distinction among parameters in a same group.

Some useful information concerning diagnosis can also be obtained at this step. As we will se
later, principal components analysis is the main tool for this purpose. It gives some
preliminary indications on how active model parameters can be modified to improve model
performances.

Optimisation and diagnosis. Parameters estimation techniques are the main mathematical
tool we are proposing to guide model diagnosis. Free model parameters values allowing
significant residuals reduction are here identified by fitting the model on the available data.
Diagnosis mainly involves comparisons between estimated and nominal model parameters
values. Large differences are expected for parameters related to the physical phenomena that
are not correctly represented in the model. Different algorithms for optimisation have been
considered and tested (see section 2.3).
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4 PARAMETERS SPACE ANALYSIS R

I. Active and free model

parameters identification DIAGNOSIS

II. Optimisation

- /

Figure 2.1. The main steps toward diagnosis in the proposed methodology.

2.1. MODELS, MEASUREMENTS AND UNCERTAINTIES

Thermal models for buildings

A building is an open and non-adiabatic thermodynamic system that exchanges mass and energy
with its environment. It can be seen as an ensemble of solid elements (walls, doors, windows, etc.)
that separate a volume of air from the outdoor environment. The main physical processes
contributing to the definition of the building thermal state are:

— heat conduction in the matrix of the solid elements;

— long-wave radiation exchanges among the indoor surfaces, and between the outdoor surfaces
and the environment;

— solar radiation transmission and absorption;
— convective heat transfer at the surface-air interfaces; and

— convective heat transfer by air mass transport among building zones, and between every zone
and the building environment.

Thermal models for buildings can be usually described by finite-dimensional models of the
general form:

(1) =F(T(1),U(1),6)

2.1)
Y(£) = G(T(£),U(?),0)

where 7'(¢) is a n-dimensional vector containing the so-called state space variable (e.g. temperatures
at the nodes of the discretisation mesh), Y(¢) is a g -dimensional vector including the observation
variables or outputs, and U(?) is the inputs or excitations vector. 0 is the p-dimensional vector of
models parameters, and F and G two matrices of time-dependent non-linear functions. A particular
model thus corresponds to specification of functions in matrices F and G, as well as the parameters
vector 0.

For envelope models, linearity is usually assumed. Model (2.1) then becomes:

T(t) = AO)T(¢)+ B(O)U(¢)

(2.2)
Y(£) = J(O)T (1) + G(O)U(t)

where A4 (n x n) is the so-called state matrix, B (7n xr) is the inputs matrix, J (g x n) is the outputs

matrix and G (g xr) is the direct gains matrix.
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Typical model inputs in building thermal analysis are the outdoor dry temperatures, the solar
irradiance on the different building facades, and the heating power injected in the different zones of
the building. Most of the time, the model user is not interested on predicting the time evolution of the
whole building temperature field. The “mean” air temperature and/or the “mean radiant”
temperature at the building zones usually form the outputs vector.

Concerning model parameters, we can split them in several categories:

— Geometrical parameters: volumes, surfaces dimensions, walls orientation and inclination,
thickness of the wall layers, etc.

— Themophysical parameters: thermal conductivity, density, and specific heat capacity of the
different materials in the building.

— Optical parameters: solar transmittance, absorptance and reflectance for transparent elements;
solar absoptance for the opaque elements; surfaces emissivities; etc.

— Convective parameters: parameters in the phenomenological laws representing the heat
exchanges taking place at the solid-air interfaces.

— Air exchange parameters: parameters involving the infiltrations and ventilation processes
representation.

— Others: parameters related to heating/cooling control, shading devices operation, ventilation
strategies, etc.

Measurements

Empirical model validation requires good quality and informative enough data concerning the
building behaviour. The design of a validation experiment includes several choices, such as which
signals to measure and when to measure them and which signals to manipulate and how to
manipulate them. It also includes some more practical aspects, such as sensors accuracy and location.

High quality experiments for empirical model validation purposes are scarce. The better ones has
been carried out in specific and well characterised experimental devices (e.g. test rooms). In such
cases, measurements sampling time generally goes from 1 minute to 1 hour and the experiment
duration is several times larger than the first time constant of the system.

Measurements must provide good enough information about the time evolution of both the
forcing functions and the quantities involved in the definition of the outdoor environment. That is, the
solar radiation (at least, its diffuse and its direct components), the temperature and the humidity of
the different ambiances surrounding the system, the wind speed and the wind direction, the heating
or cooling power supplied to the different zones of the system, etc.

Measurements describing the thermal behaviour of the system generally concern the time
evolution of the air temperature at different places, the black globe temperature, the temperature and
the heat flux at the indoor wall surfaces, etc. However, measurements involving heat flux or surface
temperatures are not reliable enough in practice.

Uncertainties

A keyword in empirical model validation is uncertainty. Uncertainty involves measured data,
model parameters or/and structure, and model response:

Measurements uncertainty

Data are always associated with some uncertainty, if only because of the finite precision of the
sensors used to collect them. The approach most commonly used to characterize such uncertainty
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consists in assuming that data are corrupted by additive random noise, whose probability density
function is known. While very popular, this approach is not immune to criticism. The probability
density function assumed for the noise is not always based upon any sound prior information, and
one does not necessarily have enough data to test it. Moreover there are situations where the main
contribution to error is not of a random nature and therefore not suitably described by random noise.

An attractive alternative to the stochastic characterization of errors is characterization by upper
and lower bounds only. Let ¥ (¢) = {yZ (1), k= 1,---,q} be the ¢ -dimensional vector of observed

quantities. Measured bounded-error data at time ¢ are thus represented by the intervals:

LI RO BN ()] (2.3)

Most sensors manufacturers provide rules for computing the maximum and minimum possible
measurement errors at any given range of operation, allowing y;min (#) and yz’max (t) to be

computed. Structural errors (such as bias introduced by the location of a sensor within a
inhomogeneous medium) may however lead one to choose more pessimistic bounds than those
obtained by this method. These bounds can then be viewed as the extreme values of the error between
system and model outputs that are considered acceptable by the experimenter.

Model parameters uncertainty

The uncertainty in model parameters is generally not of a random nature. It can reflect:

— an imperfect knowledge of the system geometry or even composition;
— the lack of measured data for parameters;

— the uncertainty due to the finite precision of the sensors and methods used for measuring
system properties;

— the uncertainty associated to the system exploitation, which is generally related to an
unpredictable behaviour of the future users;

— and the imperfect knowledge we have about the physical processes taken place in the system.

Hence, as data before, model parameters uncertainties will be characterised by upper and lower
bounds. Let 0= {Gi(t), i=1,---, p} be the p-dimensional vector of model parameters. Parameters

uncertainty is thus described by the intervals:
Vi ei € [ei,min ei,max (t)] (25)
or in a more compact way, by

@E;[G

i=1

0

i,min i,max]

which is the Cartesian product of the previous p intervals. The box ® will be called parameters set.

When checking model validity, intervals (2.5) generally represent parameters uncertainty due to
the finite precision of the sensors and methods used to estimate them (see section 2.2). For diagnosis
purposes, they can be larger than the previous ones, as they represent the domain of variation where
we are looking for suitable parameters values (see section 2.4).



12

Elena Palomo and Gilles Guyon

Model response uncertainty

Model outputs uncertainty results from the uncertainties of the model parameters. The uncertainty
in the model response at time ¢, associated to the parameter set ®, can be characterized by the
intervals

[yk,min (t) Yk, max (t)] > k= 1""3(] (2.7)

so that V& €® the probability for y,(z,0) g[yk,min (1) Vk.max (t)] is less than a (e.g. 0.01).If ¢ =0,

then (2.7) represents the intervals of minimum width, so as

Ve @, Vl‘, Vk, yk,min (t) < Vi (t, 9) < yk,max (t) (28)

Such intervals are the result of an application from the parameters space to the outputs space that is
defined through the model equations. Methods for calculating them are presented in next section.
They are usually referred as “ B % simulations uncertainty bands”, where 3 =(1-a)x100.

2.2. CHECKING THE MODEL VALIDITY

Checking the model validity is based on comparisons between measurements and simulations.
The simplest way to compare them is just to depict the trace of the simulated values together with
measured values. This is important and should never be overlooked. However, it is often not the best
way to characterize the differences observed between measurements and simulations. Others
methods have, therefore, also been applied. This section describes some of the mathematical tools
available for rigorous checking of the model validity.

Relevant characteristics of the residuals

Residuals are defined as the difference between measurements and simulations™

e(t) = YVmeasured (t) = Vsimulated (t)

Relevant characteristics of residuals can be investigated by analysing trends, mean and standard
deviation values, as well as spectral properties. This section introduces the statistics we are using as
well as some comments on their meaning and their potential use for model validation purposes.

Stationarity. A stochastic process is said to be strictly stationary if its properties are unaffected
by a change of time origin; that is, the joint distribution of any set of observations must be
unaffected by shifting all the times of observations forward or backward by any integer
amount. It is said to be stationary up to the order m if all its joint moments up to the order m
are independent of the absolute time. Usually, the term stationary is applied to a stationary
process up to order 2. Different methods exist to detect non-stationarity: 1) depict residuals; 2)
estimate mean and variance over different time periods; 3) analyse the autocorrelation
function. Systematic changes in the level of a time series (trends) is a typical kind of non-
stationarity. In the framework of model validation, residuals trends usually reveal changes in
the causes of deficient model behaviour.

Mean and variance. The mean value is the first statistic that can be used to characterise
residuals. A mean value far from zero means that the model does not represent adequately the

" This is perhaps a little misleading since the term residuals most often is used for the deviations between an
estimated model and the measurements (the so-called prediction error). This convention has been adopted

here although there is a conceptual difference between simulation and prediction errors.
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static behaviour of the actual system. The residuals variance measures the fluctuations of the
residuals around their mean value. It can be used as a first indication of the ability of the
model to describe the dynamic behaviour of the system.

— Spectrum. The power spectrum is defined as the Fourier transform of the residuals auto-
covariance function. It shows how the residuals variance is distributed with frequency. In the
framework of model validation, the spectrum can be used to determine at which frequencies
the problems of the model mainly appear. In other words, it is a frequency check on the
dynamic performances of the model. As it is shown later, the spectrum will allow us to
estimate the domain of applicability for the model.

Simulations-measurements consistency analysis
Let

@ = [el,min el,max ] x [92,min e2,max ] Xoeee X lep,min ep,maxJ

be the so-called parameter set, where lGl.,mm Gl.ymaxJ (i =1,---, p) represent the uncertainty intervals

for model parameters. We note

[yk,min (t) Yk, max (t)] s k= L q (29)

the model outputs bounds over ©®. They are also called “model outputs uncertainty” or “f %

simulations uncertainty bands”. They have been defined in section 2.1. As pointed out before,
measured bounded-error data are characterised by the intervals

Din® Vi@, k=1o0g (2.10)

In the following, we will assumed that 99% simulation uncertainty bands (eq. 2.9) are not too large
compared with the uncertainty bands associated with measurements (eq. 2.10). In other words, we
suppose that the model is accurate enough for validation purposes.

Some judgement about the validity of the model can be get by comparing measurements with the
99% simulations uncertainty bands:

— The model is stated to be good enough compared with data uncertainties when the following
condition is verified

Vl‘, vk yZ,min (t) < yk,min (t) < yk,max (t) < yZ,max (t) (2'11)

If simulations uncertainty bands are always included in the measurements uncertainty bands,
the validation procedure is then stopped for measurements uncertainty does not allow to go
ahead with model defaults detection.

— If the previous condition is not satisfied, we will say that measurements are within the 99%
simulations uncertainty bands when no more than 1% of measured observations fall outside
them. In such a case, judgement about the validity of the model requires more sophisticate
mathematical tools (see section 2.4). This first comparison between measurements and
simulations only supplies information about the validity of the model at low frequencies, it
does not test the model behaviour at high frequencies. The firmest conclusion we can derive on
the validity of the model can be summarised as: “It seems that the model reproduces
adequately the static behaviour of the system”.
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— If measurements are outside the 99% simulations uncertainty bands (more that 1% of
measurements falling outside these bands), the model may be deficient and justifies further
checking of the observed differences between measurements and simulations.

Three different techniques are generally used to estimate the model uncertainty bands. They are
based respectively on Monte-Carlo methods, differential sensitivity and stochastic sensitivity analysis
(cf. [10, 4]). Two of them, those that do not require modifications of the simulation codes, have been
applied in the framework of the IEA Task 22:

- Standard Monte-Carlo approach. It assumes model parameters to be random variables

whose probability density function is known. N vectors 9(‘9),3 =1,---,N of parameters are
chosen at random, based on the selected probability distribution functions (e.g. uniform

distributions over [Gi,min, Gi’max]). Simulations are then performed for getting model outputs

evolution associated to every parameter vector: Y(¢; H(S)), s=1,---,N . Provided there are a
large number of parameters in the model, irrespective of their distributional properties, it is
expected that the outputs from simulations were normally distributed (central limit theorem)
with mean and standard deviation

N

N
M= Y w6 and 0= Y [0 -m o] 1)
s=1

s=1

respectively. 99% simulations uncertainty bands for the k™ model output are then estimated
as:

my (1) £2.33s,(¢) (2.13)

This means that the probability of observing simulations outside such bounds at time ¢ is less
than 1%. If outputs are normally distributed, the estimate of their time-dependent variance will
follow a X? distribution with N —1 degrees of freedom. Hence, the (1-0a)% confidence
interval for the standard deviations is given by:

N -1 N -1
w7 S0, <s5,(0) |
o/2,N-1 1-a/2,N-1

s (1) (2.14)

It can be proved from the equation above that the accuracy of s;(¢f) depends only on the
number N of simulations undertaken and not on the number of free model parameters. In
addition, only marginal improvements in accuracy are obtained after 100 simulations. This fact
makes Monte Carlo methods a very efficient way for model outputs bounds calculation when a
very high number of parameters are involved in the analysis.

— Method founded on sensitivity analysis. Let 6, = {6 0,, - 60,1)} be the vector of

0,1

nominal values for model parameters. Parameters uncertainty is now characterised by the
intervals

0,£A0=10,, £A8, 6,,1A8, - 6, £A0, | (2.15)

0,1 — 0,2 —
The 99% model output bounds over this parameter set are then approximated by:

Vi (6:6,) = Ay, (;A6) (k=1,-,9) (2.16)
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with

p

0y, (1)
Ay, (£:A0) = (s, (A8, ) and s ”'([):(#J (2.17)
¢ Z ¢ ¢ 00, ),

i=1 Yo

where s ;(7) represents the sensitivity of the k™ model output to the i th parameter. Methods

for sensitivity calculation are presented and discussed in section 2.3.

The main advantage of this technique is its simplicity. Its application is, however, limited by
the underlying hypotheses of linearity: linear relationships are assumed between any
parameter change and the consequential change in the model outputs. Furthermore, the
sensitivity to each parameter is supposed to be independent of the values of the other
parameters. For most systems this is not strictly true. Nevertheless, for small changes in the
parameters both assumptions may be reasonable (cf. [10, 15]).

Spectral domain of applicability

The validity of a model is generally in keeping with some kind of application - e.g. a model that is
good enough for predicting heating load requirements could be inadequate for thermal comfort
analysis. Usually, model validity depends both on the dynamic characteristics of the applied forcing
functions and on the dynamic characteristics of the outputs that must be reproduced. Some pertinent
advises concerning the potential field of model application can thus be supplied by checking its
dynamic performances. As stated before the residuals power spectrum discloses at which frequencies
the disagreements model-reality appears. However, on this basis only subjective statements are made
on the goodness of the model at different frequencies.

A first attempt to check the dynamic behaviour of a model in a non sub-subjective way was the so-
called “qualifying density power spectrum” (QDPS) proposed in [4]. It is a “reference” allowing us to
determine in which frequencies the model performs well or badly. The performance of the model is
good when the density power spectrum of the residuals is below the reference spectrum, and is
performing badly in regions where the residuals spectrum is above the reference. Main drawback of
this approach concern the way the QDPS is defined since there still remains some subjective
judgement in the creation of QDPS. In addition, a QDPS is always associated to a binomial system-
experiment, so as changing either the system or the experiment implies a new QDPS creation. A
simpler and more rigorous approach is here proposed.

. th
Let ') () and I', () be respectively the power spectrum of the measured k™ model output

and the power spectrum of the corresponding residuals. The variance of the measurements over the
frequency interval o, < |c0| <, is then given by

L)

]E{yl3 (t)}mls‘m‘éu)z = 2j ryk ((D)d(D (218)

@y

and the variance of the residuals is

0}

E{ei (t) }mls‘m‘sz = 2-[ rek ((D)d('o (219)

o
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The model performance over the frequency interval o, < |0)| < m, can be defined as

E{ez (t)}mlﬁ‘w‘émz
N (@, ®,) = k=19 (2.20)

E ylz (t) o <|ol<o,

Such indices measure the significance of the residuals fluctuations compared to the fluctuations of
the measured model outputs. The spectral domain of applicability of the model is then determined by

all the frequency intervals ©, < |0)| <, soas Vk, M (0,0,) < Myeson » Where My oo 1S an user-

supplied threshold.

2.3. ACTIVE MODEL PARAMETERS IDENTIFICATION, CORRELATION
ANALYSIS AND PRELIMINARY DIAGNOSIS

As we said before, this is a preliminary and fundamental step toward diagnosis. It aims to identify
the physical phenomena and the parts of the model that can be really tested on the available
experimental data. Sensitivity analysis is the main mathematical tool we are using to reach this
objective. It involves:

— Calculation of the model outputs sensitivity to every model parameters. Sensitivity
provides first-order estimates of the effect of parameter variations on the model response.

— Active model parameters identification. It must be noticed that all the parameters in the
model can potentially affect the model behaviour, but generally only a small number of
them are truly important or active. The reason is that not all the parts of the system are
equally excited by the inputs, and not all the physical processes taken place have
comparable effects on the quantities to be observed. The so called active model parameters
are those to which model outputs are sensitive enough. They are related to the dominant
parts in the model. Validation of phenomena whose mathematical representation includes
any active parameter is not possible.

— Active parameters correlation analysis. Two active parameters are stated to be strongly
correlated when they show similar effects on the model outputs. Identifying correlations
among active parameters is a fundamental step for correlations introduce additional
limitations for validation purposes. That is, no distinction can be made between two parts
of the model when their corresponding active parameters are correlated among them.
Correlations between parameters depends both on the model structure (the way the
parameters are involved in the model), and on the model inputs behaviour. While
correlations related to the model structure are usually foreseeable, correlations induced by
the model inputs are generally not easy to anticipate. Different tools as statistical linear
correlation and principal components techniques are here proposed to gather active model
parameters into independent (or quasi-independent) groups.

— Principal components analysis and preliminary diagnosis. Principal components analysis
(PCA) was introduced in statistics by Hotelling [16]. Dempster [17] gives an excellent
geometric treatment of PCA as well as an overview of its history. Since 1933, applications
based on PCA are growing on (image compression, model reduction, regularisation,
structural instabilities analysis, etc.). As it is shown later, PCA allows de-correlating time
series. In the framework of model validation we will use PCA for defining parameters
signatures and for supplying some preliminary elements for diagnosis.

Sensitivity calculation methods

Sensitivity analysis studies the effect of parameter variations on the behaviour of a system. A
rather complete state of the art on the techniques of sensitivity analysis is brought in [15]. One can
distinguish two main families of sensitivity methods: those which follow a deterministic approach, on
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the one hand, and those which adopt a statistical procedure, of another. The well-known techniques
of differential sensitivity analysis are in the first group. Its characteristic is to examine the first-order
derivatives of the model response with respect to its parameters.

The sensitivity of the model outputs to the parameter 0, is defined by:

s(- 210 {aylm oy, aqu} 22

06, 06, 06, 06,

It provides first-order estimates of the effect of parameter variations on the model response. Similarly,
the sensitivity of the state vector (e.g. temperature vector) to the model parameter 0, is:

ST,i(t) =

8T(z):{6Tl(t) onL®1) ﬁTn(t)}T (2.22)

090, 09, 09, 00,

According to the complexity of the problem, these derivatives either will be calculated in an
approximate way (parameter-perturbation methods) or exact (sensitivity-equation methods):

Parameter-perturbation method. The sensitivity of the k" model output to the i” model
parameter is often approached in the following way:

0y (1) _ yi(:0,) =y, (136, £ A,)
00, AO,

(2.23)

th

where 0, is the nominal value of the i model parameter and A®, represents a small

perturbation around its nominal value.

The parameter-perturbation method is hence based on changing the value of a single
parameter at a time, running the model and comparing the new model response to the one of
the nominal model.

Sensitivity-equation method. Among the exact methods (see Annex A), the so called direct
or sensitivity-equation method is here considered. The equations governing the time evolution
of S (¢) are obtained by simple differentiation of equations (2.2). This lead to the so-called

sensitivity models (i =1,---, p):

AON 5. 0+ {a E(O)J )+ (a A(O)j T(:6) — (a C(G)J dT(t; 9)}
dt ; 00 00 00, | dt

l

3 0G(9) 0J(0) )
S;(t)=JS;,; (1) + {( 30, j U(t) + [ 70 J T(t,e)}

i i

! 0=0,

0=0,

where C, A and ] are, respectively, the matrix of thermal capacities, the state matrix and the
outputs matrix of the nominal model. The terms in brackets are evaluated for 6 =0, , where 0,
represents the vector of nominal parameters values.

Solving sensitivity problems hence involves the time integration of p+1 state models (the
nominal model and the sensitivity models) of the form:
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dX(t)
= AXO+vO) (2.25)

Y(1) = JX() + (1)

where X() represents either 7(¢) or Sy ;(7),and Y(¢) represents either Y(¢) or S;(), withi=

1, 2,.., p. It must be noticed that each sensitivity model includes as many ordinary differential
equations as the nominal model. Sensitivity analysis for large-scale systems including a high
number of parameters (e.g. hundreds of equations and parameters) could be then
computationally intensive and limited by the computer performances. A numerical approach
which makes it possible to extend the application of the sensitivity-equation method to such
kind of problems is proposed in Annex A. It rests on the theory of balanced realisation, which
makes it possible to strongly reduce the number of differential equations in a model without
introducing a significant loss of precision. An example of application shows the effectiveness of
the proposed method.

Active model parameters identification and correlations analysis

Let s;;(7) the sensitivity of the k™ model output to the i™ model parameter. It represents the

changes in y;(¢#) which are brought out by a unitary change in 0,. When the model includes more

than one parameter, comparisons among sensitivities could be a tricky matter for parameters usually
have different unities. So, for comparisons purposes the use of the reduced sensitivities is proposed:

~ 0
Sk,i(t) = (%j = ei Sk,i(z) (2.26)

5;.i(t) represents the changes in the k™ output of the model caused by a relative variation in the 6,

parameter. It must be noticed that sy ;(¢) and y;(¢) are stated in the same unities.

The effect of the parameter 0, on the k™ model output is measured by means of the following two
statistics:

N N
1 2 - 1 2 - 2
L =— (t d L= | ()=, 2.27
“’/{,1 N Sk,l( ) an Gk,l N -1 (Sk,t( ) “k,[) ( )
t=1

t=1

where N represents the total number of observations in the analysed time series. The first one
(sensitivity mean value) measures the influence of parameters on the model static behaviour, and the
second one (sensitivity standard deviation) measures their effects on the model dynamic behaviour.

0, is said to be an active parameter with regard to the k™ model output when p,; >o or/and

6.; >B. a and B are appropriate thresholds for testing parameters significance.

Alternatively, the effect of the parameter 0, on the k™ model output could be measured by means
of the following distance

dii =+ l’li,i + Gi,i (2.28)

0, is said to be an active parameter with regard to the k™ model output when d ; is greater than a

given threshold.
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The necessary condition for a physical phenomenon could be validated on the available data,
is that it involves at least one active parameter in its mathematical representation. However,
this is not a sufficient condition. It is also required that active parameters associated to it was
not correlated with another active model parameters.

Active model parameters leading to similar effects on the model outputs must be identified for
they introduce some additional limitations for validation purposes. Statistical correlations analysis
can be used to identify such limitations. The degree of correlation between parameters &; and 6;

with regard to the k™ model output is measured by:

N
T D G- )G (0= 1)

k =
PP = = (2.29)
Ok,i Ok,j

When ‘pg‘)‘ >y, no significant differences can be established between the effects of these
parameters on the k™ model output. It can be then stated that both parameters, 6; and 6, belong to

a same group of model parameters. A pertinent selection of y leads to the cutting up of the active
model parameters set into ¢ quasi-independent groups, 7, (s=1,---,2).

For optimisation purposes (see section 2.5), we will define group representatives. A group
representative is the parameter in a group that show a greater effect on the model outputs. For

instance, the parameter 6,, is the representative of the group 7, = {Hi 0; Qm} when d ,, (see
eq. 2.28) is greater than both d; ; and d ;. Free model parameters will be the group representatives.

The number of free model parameters is hence equal to the number of quasi-independent groups.

Principal components analysis and preliminary diagnosis

Principal components analysis is a statistical tool allowing transformation of a set of correlated
time series into a new set of de-correlated ones. In the framework of model validation we are using it
to define parameters signatures (another way of studying parameters correlations) and to supply
some preliminary elements for diagnosis.

Fundamentals of principal components analysis

Let
~ ~ ~ T
(O =[501® Fa@® - 5, 0] (2:30)

be the vector including reduced sensitivity time series for the k™ model output. The covariance
matrix

t
W= j SO0 dr (2.31)
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is a positive definite matrix (pxp) with a set of non-negative real eigenvalues

A2z A,z -2 1,2 0 and the corresponding mutually orthogonal eigenvectors

V= [171 Vy oo 17},] . Hence, it can be written as

w=vy’ (2.32)
where X = diag[/il Ay o A p] is a diagonal matrix including the so-called singular values of
().

It can be demonstrated that ¥ defines a complete basis in R” . Consequently, £(¢) can be written
as

S(t)=VX() (2.33)

T

where X(t) = [xl (1) x@) - x, (t)] is the vector of the decomposition coefficients of £(¢) on V.

The reduced sensitivity of the k™ model output to the i parameter is then written as

)4
S () = Zvi,mxm(t) (2.34)
m=1

h

where v, , is the (i,m) element of the matrix V. The product v, ,x, (¢) is the so-called « m'

principal component of s ;(¢) ».

Some interesting properties of principal components are:

P1. It can be proved that the components of the vector X (¢) are statistically uncorrelated. That is

tr 1
T A i=]j
W.=| XX @dt=% or X; (t)xj (t)dt = T (2.35)
0 i#j
t, t,

Proof : From equation 2.33, it is a simple matter to show that W = VWXVT. Knowing that

v =1 and taking into account 2.32, the previous equation becomes W, = viwy =x.

P2. The whole energy of £(¢) is defined as

D Iy
E =trace(W) = ZJ‘S,%J (t)dt (2.36)

=1

It can be easily demonstrated that the whole energy of £(¥) is given by the sum of its singular
values:
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)4
E= Z/ii (2.37)
i=l1

Proof : Using equation 2.32 and simple properties of matrices, it is a simple matter to show that

P
E = trace(W) = trace(VZVT) = trace(Z VTV) =trace(X) = Z A;

i=1

PCA applications in the framework of model validation

In the framework of model validation, PCA has three main potential applications:

— It can be used to study correlations among model parameters through the analysis of the
so called parameters signatures.

— It allows forming a new set of truly independent parameters for further use in
optimisation (see section 2.4).

— It supplies some interesting information about diagnosis.

B Model parameters signatures: From equations (2.34) and (2.35), it is easy to prove that the
variance of the reduced sensitivity s, ;(¢) is given by

P

t,»
or (1) = J'Si,,-(t)dt = Zviz,mlm (2.38)

¢ m=1

Hence, v, A, represents the contribution of the m" principal component to the variance of 5.0

im’¥m
We call signature of the i model parameter with regard to the k" model output the ensemble

im'm )y

{v2 A } e Parameters showing similar signatures are parameters leading to similar effects on the

model outputs when changing their values. As correlations analysis before, model parameters
signatures can be used to group parameters and to identify possible causes of ambiguity in further
diagnostics.

B A new set of truly independent parameters: Assuming linear relationships between model
outputs and model parameters, the effect of parameters changes on the outputs can be expressed as

P
AG;
vk A=Y 25,0 239
i:l 10

where 0;, and A6, represents respectively the nominal value and the variation of the i th parameter.
According to 2.34, the previous equation becomes
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P
vk Ay 0= Y M) (2.40)
i=1
with
=0
=) v, (2.41)
9,0
=S

where v ; is the (/,i) element of the matrix V.

The principal components analysis then suggests a new set of parameters {}/ i}i:1~~~p that are
defined as linear combinations of the physical or initial parameters. The sensitivity of the model
outputs to these new parameters is determined by the projection of {(¢) on V. That is, x;()

represents the sensitivity of y,(¢) to y;. As {xl- (t)} are statistically uncorrelated time series

i=lyep
(see property P1), then { Vi }iZl p is a set of truly independent parameters.

The significance of the parameter y,; can be measured by

, -1
Z Al A (2.42)
j=1

which represents the contribution of x;(f) to whole energy of £(¢) (see property P2). In the same

way, the significance of the subset y, y, -+, 7,, is measured by :

p T
.3
I= =

Knowing that 4,2 4,2 -2 4,2 0, the equation before allows to determine new

active/free model parameters. Parameters y| 7, ---, 7, are stated to be active/free when

m

p o
S| 30 o
=1 =1

where [ is an appropriate threshold (e.g. £ = 0.95). In practice, it is often observed that only a few
numbers of new parameters (mainly the first one) are really significant.

B Preliminary diagnosis: When linear relationships can be assumed between model outputs and
parameters, some useful information concerning diagnosis can obtained from principal components
analysis. The possibilities for diagnosis are associated to two main observations:
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— The significance of the first new independent parameter (see equation 2.42) is usually greater
than 0.8; that is, the first component of the vector X (#) explains more than 80% of the whole

energy of the signals in () .

— A strong statistical correlation is generally observed between residuals and the first
component of the vector X(#). This mean that good enough linear relationships can be

established between residuals and x,(¢).

Under such conditions, it can be assumed that significant reduction of the residuals will be associated
to a model output variation of the form

Ay () = Ayyx (1) (2.45)

Taking into account the functional relationship existing between Ay, and the initial model
parameters:

AO
A_elvll+A_62v21+...+ p

lo 20 po

Ay, = Vo (2.46)

the “minimal” modification” of model initial parameters required will be:

AB;/6,,=v,Ay, j=L-p (2.47)

This equation shows that coefficients {vjl }jzl_”p (the first eigenvector) supply some useful
information concerning the way the initial model parameters must be modified in order to reduce the

observed residuals.

2.4. FREE MODEL PARAMETERS ESTIMATION AND DIAGNOSIS

The main tool that we are proposing to guide modelling errors diagnosis is based on parameter
estimation techniques. If some thing in the model is clearly wrong, it is expected to find large
parameters displacements when fitting the model on the measured data. The comparison of the
estimated parameters values with their nominal values, should lead to known reasons for the
observed modelling errors and to suggest model improvements.

Fitting the model on the measured data usually involves:

— The definition of an objective. This can be done in very different ways. The simplest one
consists on defining a scalar functional of the residuals (e.g. the residuals variance) to be
minimised. More unusual objectives are those taking into account model and
measurements uncertainties.

— The definition of the problem constraints if any. In the framework of model validation,
constraints usually refer to the allowed values for free model parameter.

— The selection of the optimisation algorithm. Several criteria can be used for selecting the
optimisation algorithm. First of all, the compatibility with the problem statement (objective
and constraints). Next, the nature of the algorithm (global or local, deterministic or

" “Minimal” modification means that the maximum displacement AO ;/90, is the minimum of all possible

maxima.
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stochastic, etc.), its performances (reliability, rate of convergence, etc.), and implementation
facilities.

The subject of optimisation is a fascinating blend of heuristics and rigour, of theory and
experiment. It can be studied as a branch of pure mathematics, yet has applications in almost every
branch of science and technology. An impressive amount of methods and optimisation algorithms
have been proposed in the past. In the framework of model diagnosis, optimisation is usually a quite
difficult problem because:

— Data are always associated with some uncertainty, if only because of the finite precision of
the sensors used to collect them. Optimisation methods assuming errorless data, as those
based on the minimisation of a scalar function of the residuals, could lead to fitted models
that represents the dynamic behaviour of both the system and the measurement noise .
Hence, diagnosis conclusions can be biased by data uncertainty.

— Diagnosis usually requires finding the global solution of the optimisation problem instead
of a local one. The possibility of finding global minima has been largely considered in the
past, but there still remain considerable difficulties. Historically, methods to solve global
optimisation problems have been classified as either stochastic or deterministic. Stochastic
methods evaluate the objective function at randomly sampled points from the parameter
region of allowed variation. Deterministic methods, on the other hand, involve no elements
of randomness.

Three different optimisation methods have been implemented and tested in the framework of this
project:

— The Gauss-Newton method. This method is only generally practicable to search for local
solutions rather than global solution. It has been however chosen by its simplicity and its
well known efficiency for finding local minima.

— A random search global algorithm. All global optimisation algorithms can be partitioned
into the two classes: reliable and unreliable. Clearly all stochastic methods, including
simulated annealing, clustering, and random search, fall into the unreliable category. In
fairness, however, efficiency is the strength of such methods. For now, large-scale
problems may best be solved stochastically.

— A deterministic global algorithm. The class of deterministic global algorithms, including
branch and bound methods, covering methods, interval methods, tunnelling, and
enumerating, can be partitioned into two categories: methods which compute objective
function values at sampled points (point methods); and methods which compute function
bounds over compact sets (bounding methods). This division further separates reliable
methods from unreliable. Point methods are inherently incapable of reliably solving the
global optimisation problem. On the other hand, bounding methods, if properly
implemented, can produce rigorous global optimisation solutions. A heuristic bounding
method has been here proposed.

The first two methods are base on the assumption of errorless data. On the contrary, the
deterministic global algorithm allows handling data uncertainty.

The three methods are briefly described below. A discussion concerning their main advantages
and drawbacks is included at the end of this section.

Only single-output models have been considered. y(¢#) and 0 represent respectively
simulations and measurements.
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Gauss-Newton method
Let

e(1,0) =y (t) - y(1,0) (2.48)

be the residuals associated to the parameter vector 0, and let

N
J(0)= Zez(t,ﬁ) (2.49)
t=1

be a quadratic measure of it. The Gauss-Newton method consider the problem of finding a local
minimum of the objective function J(0). The minimising point is referred to as 0" . Note first of all
that this method is only generally practicable to search for local solutions rather than global solution.

As most of the optimisation algorithms, the Gauss-Newton one looks for the minimising point
iteratively (see e.g. [18]). At iteration k, the parameters vector is modified as

9D = g 4 p®) (2.50)

where the direction of search p'*) is determined from the Hessian matrix and the gradient of the
functional J(0) :

P = -[He(")r Gr® (2.51)
The gradient is given by:
5 N
Gr'h == Ze(w(")) ¢ @) (2.52)
N
=1
with
T
(k) (k) (k)
ey = | 22000 2ywo®) oy 25
00, 00, 00,

As for the Hessian matrix, it is approached by:

eV = 2% 0 Vo) (2.54)

The iteration loop is terminated when the following user-supplied convergence test become
satisfied:

JO") <a or J(OPY -J0%F )< p (2.55)

where o and B are user-supplied thresholds.
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Monte Carlo approach

Monte Carlo methods consider the problem of finding the global minimum of the objective
function J(0) (eq. 2.49) over a given parameter set ®. We remember that the parameter set is

defined by the box

0= [Hl,min el,max] X [02,min 02,max ] Xe 'X[gp,min ep,max]

i,min

where [9

It defines the parameters domain where we are looking for parameters values allowing significant
model residuals reduction. Such intervals have generally nothing to do with precision:

Hi’max] represents the allowed interval of variation for the i ™ free model parameter.

— They must be wide enough so that modelling hypothesis associated to the free model
parameters could be tested.

— They must be chosen so as model outputs bounds over ® include measurements. In this

way, the parameter set hopeful includes parameter vectors leading to a good enough model
behaviour.

As previously, the minimising point is referred to as 0" €®

Pure random search algorithm

Among the existing stochastic approaches (see e.g. [19]), a « pure » random search algorithm has
been selected because its simplicity. It performs as follows:

a) Generates n random parameter vectors (G(S) €®, s=1,---,n) based on uniform
probability distribution functions.

b) Performs model simulations and calculates J (e<s>), s=1, ---, n.

c) Estimates the minimum value of the objective function as
J* =min {J(Gm),J(G(Z)),-'-,J(O("))}. The solution we are looking for is then 0" so as
J(OH=J".

In order to see how close the algorithm comes to finding the global minimum, the Chevyshev
inequality can be applied to the sample results. This theorem states that if the mean, m, and the
standard deviation, s, of the sample of J(0) values are obtained as estimates of the universal mean,

p, and standard deviation, & ,of the distribution of all J(0) possible values, then for any real
number, r, the probability that the observed value, x, is exceeded is given by:

RS

2

P(|x—u|20)£r

In other words, the probability of a J(0) value falling outside the interval [u —rc, B+ rG] is at
most %2 . For instance, if the highest (or lowest) value of J(0) is found to be 3.5s from the mean

value, then it would be expected that 8.2% (=1/3.5?) of the expected J(0) values would be found
distributed beyond m + 3.5s. If the tails of the J(0) distribution are found to be similar, then an upper

bound for the probability of J(0) values exceeding the highest (or lowest) observed value would be
0.041.
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Multi-step random search algorithm

The previous algorithm allow us to find the global minimum of the objective function J(0) over a

user-supplied parameters set ® . Choosing it is a non trivial task and the quality of diagnosis could be
biased by the selection of ® . Hence, an iterative procedure has been proposed to get the optimisation
solution we are looking for (see figure 2.2):

(@)  First of all, a prior parameter set ® is selected.

(b)) Random search is then carried out and model outputs bounds over ® are calculated.

(c) Next, the parameter set consistency with data is tested. One said that ® is consistent
with data when the corresponding model outputs bounds include measurements. In

other words, measurements and model simulations are in good agreement.

(d) If © is stated to be consistent with data, the procedure is stopped; otherwise, the
parameter set is re-defined and we come back to b).

Initial domain

@(0)

RANDOM SEARCH
&
MODEL OUTPUTS
BOUNDS CALCULATION

v

New domain
® (@)

A

Measurements
in simulations

bounds ?
non yes

_y» STOP

Figure 2.2. Multi-step random search algorithm loop.

Heuristic bounding method

The development of techniques for estimating model parameters from uncertain data is in full
expansion (see [20] for a quite complete survey). Deterministic global algorithms are among them a
very promising way to tackle such kind of estimation problems, especially algorithms that compute
the objective function over compact sets (bounding methods) instead of at sample points. A heuristic
bounding algorithm (HBA) has been proposed in the framework of the IEA Task 22.

Contrary to the algorithms presented previously, the HBA takes into account data uncertainty. The
problem is no longer stated as: “looking for®" €® that minimizes an objective function measuring
the simulation error”. Instead of that, we are looking for a parameter set ® providing simulation
uncertainty bands including measurements. Two main statements of the problem have been
considered:

First statement. Look for ® of minimum width so that:

Vi Y (O elm(® VD] (2.56)



28 Elena Palomo and Gilles Guyon

where y_..(f) and .. (¢?)are respectively the model output lower and upper bounds over ©®
(see section 2.1 for definition).

Second statement. Look for ® so that:

Vt b}min(t) ymax (t)] - [y:nin (t) y:;]ax(t)] (257)

where y_. (f) and y, _ (f) are respectively the measurements lower and upper bounds.

The HBA algorithm performs iteratively as follows:

a) Performs model simulations using the parameter vector 0= l@l 0, - OPJ. Results are

noted y(?).

b) Calculate model output sensitivity to every parameter around the trajectory y(¢) (see section
2.3; “sensitivity calculation methods”):

o=Fw® 5@ - 50f

c) Performs principal components analysis on ((f) (see section 2.3; “principal components
analysis “):
— calculate the singular values of ((#) (4,2 4,2 -2 4,2 0) and the

corresponding eigenvectors(Vz[T/l Vy oV ]),

—  project of {(¢) onto the eigen-basis V', X(¢)=V"¢(); and

— identify significant components of X () using the energy criterion given by equation
(2.44): x,(t) x,(t) --- x,(¢t), with d < p. Frequently, only a few numbers of the
X(¢) components (mainly the first one) are really significant.

d) Estimate the parameter set ® that verify (2.56) or (2.57) assuming linear relationships between
the model output and the model parameters (see equation 2.39):

For the first statement

— calculate Ay(¢) soas V1, y (t) = y(£) + Ay(t) ;

— calculate Ay,(t) with (=1---,d) so that V¢t the equation
Ay(t) = Ay x () +---+ Ayyx,(2) is verified;

— select times ¢, and 7, where Ay(?) takes respectively its maximum and minimum

values, and define the vectors Ay, . = {AYi(tmm)}izl,..., g and Ay o= {Ayi(tmax)}l.:lg_,_’ Y

For the second statement

~  calculate Ay, (1) = Yy ()= ¥(2) and Ay, (1) = Ypa ()= (1) ;
— calculate Ay = {Ayiﬂmm }izl o SO that the variance of

r(t) = Ay (8) - (AY1,minx1 (&) +-+ AV g minXy (t)) is minimised (linear least squared
method);
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— calculate AY o = {Ayi’max }Z_:l o S0 that the variance of

r(t) =AY i () — (Ayl’maxxl(t) +o ot AY  maxXa (t)) is minimised (linear least squared
method);

For both statements

— estimate the parameter set ® solving the equations

AY min(max) = VdTAé (258)

min(max)

where V, is the matrix (pxd ) including the eigenvectors v, to v,. Taking into

account that ¥,V = I (orthonormal eigen-basis), the solution of the equation before
is:

A

Aemin(max) = Vd A’Ymin(max)

where
T
Aé _ Ael,min(max) Ae2,min(max) Ae p,min(max)
min(max) — 6 e T e
Lo 2,0 p0

It must be noticed that if d < p the solution of (2.57) is not unique, the number of
unknowns is greater than the number of equations available. In such case, the solution

® proposed by the algorithm is the one leading to smaller parameter displacements
(“minimal” changes).

e) Define a new vector of parameters 0,,, as the geometrical centre of ® and calculate the

difference |9— 0 | If |9— 0

0=0_, and return to a).

new

new

< g, the estimation procedure is stopped ; otherwise, make

new new

Main hypothesis underlying the HBA is linearity. That is, linear relationships are assumed
between any parameter change and the consequential change in the model output. For most systems
this is not strictly true. Nevertheless, for small changes in the parameters such an assumption is valid.
The hypothesis of linearity, and thus the quality of the solution ® proposed, can be verified by
comparing model output bounds over ® calculated by Monte Carlo techniques with those coming
form sensitivity analyses.

Discussion

Main advantages and drawbacks of the three optimisation methods described in this section are
here summarised.

The Gauss-Newton method is only generally practicable to search for local solutions rather than
global ones. In addition, the method is associated to a problem statement that assumes errorless data.
It is however a simple and quite efficient method when practicable.

The random search algorithm belongs to the non-reliable category of stochastic global methods. As
the previous method, errorless data are assumed in the problem statement. Main drawback of this
approach is related to its non-reliability: the closeness of the solution to the global optimum can only
be evaluated a posteriori and in terms of probability. Additionally, there is no way to decide a priori the
number of trials to be carried out. In fairness, however, efficiency is the strength of such method. For
now, large-scale problems may best be solved stochastically.
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The heuristic bounding method has been developed in the framework of the IEA Task 22. It seems
to us a promising way for modelling diagnostic purposes. Main reason is that HBA allows to
incorporate data uncertainty (see problem statement) and it is conceived for reliable global solution
searching. In addition, HBA computer implementation is quite easy and it does not require any
simulation code modification. Main limitation is associated to the assumption of linear relationships
between model outputs and parameters. As we said before, for most systems this is not strictly true.
Nevertheless, for small changes in the parameters (small parameter set solution width) such an
assumption is valid.
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2.5. A ILLUSTRATIVE EXAMPLE

To illustrate the principles and methods we are proposing, a simple model validation exercise is
here proposed. The object under analysis is a multi-layer vertical wall that separates two rooms in an
actual building (see Fig. 2.3). The wall exchanges heat by convection with the air in the rooms, and it
absorbs solar radiation by its right facade.

LEFT ROOM RIGHT

ROOM
Convective Convective LAYER (m)
Heat Transfer Heat Transfer Paper 0.001
Plasterboard 0.010
Polyestyrene 0.080
Air 0.010
Hollow blocks 0.200
Facing 0.020

Solar
Radiation
Absorption

Figure 2.3. Wall sketch and composition (from the right to the left side).

The model and the experimental data

A one-dimensional conduction model is adopted for each one of the wall layers (k=1,---,6):

2
p“ctt oMx.1) _ AL 0 T(f’t) x* <x<x® (2.57)
ot 0x
where x*' and x{* are the left and right coordinates of the k" layer. p*’, c;k) and A* are,

respectively, the density, the specific heat and the thermal conductivity of the layer. Boundary

(k) ( (k)

conditions at x = x,” (resp. x = x,"’ ), when in contact with another capacitive layer j, are:

T(x",6)=T(x",1)

YO XA NPTV Rcr A €213] (2.58)
ax x:xj,") ax x:x,(j)
Boundary conditions at x =0 and at x = L (L = wall thickness) are:
oT(x,t)
- . = ~hy (T(0,0)=T,,, (1)) (2.59)
x=0

and
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oT(x,t
OB (L)~ () 100 260
0x
x=L
where T,,(¢) and T, (¢) are respectively the air temperature in the left and right rooms, and ¢()

represents the solar irradiance on a south oriented vertical surface. #4,, and h”.gh are constant

t

left
convective coefficients for wall-air heat exchanges representation, and m is the solar efficiency of the
wall referred to the solar irradiance on a south oriented vertical surface. The model involves 18
parameters whose nominal values are given in Table 2.1.

Thickness pc, x 107 A h n
(m) Um> K"y | Wm" . K"y | W.m™) =)
Plasterboard 0.010 680 0.350 4.0 0.008
Polystyrene 0.080 18 0.043
Air 0.010 1.29 0.071
Hollow blocks 0.200 1140 1.052
Facing 0.020 1657 1.150 4.0

Table 2.1. Nominal values for model parameters: p, density; c,, specific heat; N, thermal conductivity; h,

r’

convective coefficients; 1, optical efficiency.

Spatial discretisation of equations (2.57) to (2.60) leads to a state model of the form (2.1), which
includes 36 ordinary differential equations. The input signals to the model are the air temperature in
the left and the right rooms (see Fig. 2.4, right), and the global solar irradiance on an outdoor south
vertical surface (see Fig. 2.4, left). Concerning outputs, we will focus our attention on the wall right
surface temperature, whose measured behaviour is represented in figure Fig. 2.5 (left).

24 . . . . . 900
: Solar irrpdiange (w/m2)

Tempgrature (°C)
22}

left side \

7001

20r
600r

500r
4001

300

e B | 11 1)1

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (h) Time (h)

Figure 2.4. Left: Air temperature in the left and right rooms; Right: Solar irradiance.

The differences observed between measurements and model simulations (residuals) are shown in
Fig. 2.5 (right). It seems to be clear that the model does not reproduce adequately the static behaviour
of the system, it overestimates the wall temperature (residuals mean value = —0.88° C'). Concerning
its dynamical performances, no much better results are observed: residuals show low frequency
trends and peaks, and its standard deviation value is 0.4°C. Figure 2.5b includes the residuals
density power spectrum. It shows that problems in the model mainly appear at low frequencies.
Conclusions from simulations-measurements consistency analysis doest not differ from the previous
ones. 100% of measurements fall outside the simulation uncertainty bands. Last ones have been
calculated assuming +10% of uncertainty for all model parameters. The model or the inputs to the
model are wrong,.
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24
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22}
20
18f
161
14 14
1.6¢
12
1.8
10 R R R R R 2 L L L L L
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Time (h) Time (h)

Figure 2.5. Left: Wall surface temperature; Right: Residuals.
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Figure 2.5b. Left: Residual spectral density; Right: Simulations uncertainty bands (continuous lines) and
measurements (crosses).

Sensitivity analysis

The sensitivity of the model output (wall surface temperature, right side) to the model parameters
variations has been calculated by time integration of the corresponding sensitivity models (sensitivity-
equation method).

Active model parameters

Table 2.2 includes the mean and the standard deviation values of the reduced sensitivities.

Standard
Mean (°C) Deviation
W)
Conductivity Plasterboard -0.0065 0.0094
Polystyrene -0.4243 0.1790
Air -0.0315 0.0132
Hollow blocks -0.0404 0.0148
Facing -0.0034 0.0017
Capacity Plasterboard -0.0060 0.2501
Polystyrene -0.0006 0.0185
Air 0. 0000 0.0000
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Hollow blocks -0.0068 0.0184
Facing 0.0006 0.0039
Thickness Plasterboard 0.0001 0.2449
Polystyrene 0.3861 0.1619
Air 0.0298 0.0125
Hollow blocks 0.0304 0.0254
Facing 0.0037 0.0035
Others h Jef -0.0502 0.0228
h”,ght 0.3892 0.3568
n 0.1815 0.3353

Table 2.2. Results from sensitivity time series statistical analysis.

Active model parameters are assumed to be those leading to mean and standard deviation values
greater than 0.05°C :

Plasterboard - Heat Capacity
Polystyrene - Thermal Conductivity
Left side Convective coefficient
Right side Convective coefficient
Solar efficiency

Polystyrene - Thickness
Plasterboard - Thickness

NN O WN -

Figures 2.6 and 2.7 show the time evolution of the reduced sensitivities corresponding to the active
model parameters. It can be seen that the effect of parameters 1 and 7 (plasterboard heat capacity and
thickness) on the wall temperature merge. Parameters 2 and 6 (polystyrene thermal conductivity
and thickness) produce opposite but similar effects on the wall temperature. No similarities are found
among the sensitivity behaviour from the other parameters.

Parameters 1 & 7 Parameters 2 & 6

06 0.8—————
Reduced|Sensitivity (°C) Reduced|Sensifjvity (°C)
0.6
0.4
0.4
0.2 0s
0 of
0.2 -0.2+ L
0.4}
0.4
0.6
0.6 o8
-0.8 1 . . . . .
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (h) Time (h)

Figure 2.6. Time evolution of reduced model output sensitivities to parameters 1 and 7 (left) and to
parameters 2 and 6 (right).
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Parameters 3 & 4 Parameter 5
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Figure 2.7. Time evolution of reduced model output sensitivities to parameters 3 and 4 (left) and to
parameter 5 (right).

Correlations analysis

Table 2.3 includes correlation values among parameters sensitivity time series.

1 2 3 4 5 6 7
1.0000 0.0821 -0.4148  -0.0303  -0.4066  0.0306 0.9996
0.0821 1.0000 -0.3884  0.3667 -0.3110  -0.9935  0.0777
-0.4148  -0.3884  1.0000 -0.2522  -0.4589  0.3461 -0.4092
-0.0303  0.3667 -0.2522  1.0000 0.0020 -0.3750  -0.0345
-0.4066  -0.3110  -0.4589  0.0020 1.0000 0.2630 -0.4085
0.0306 -0.9935  0.3461 -0.3750  0.2630 1.0000 0.0353
7 0.9996 0.0777 -0.4092  -0.0345  -0.4085  0.0353 1.0000
Table 2.3. Results from active model parameters correlation analysis.

DNU R WON =

As previously, it can be seen that the parameters 1 and 7 (plasterboard heat capacity and thickness)
and the parameters 2 and 6 (polystyrene thermal conductivity and thickness) are strongly correlated.
Small changes of their values lead to similar effects on the model output. Active parameters are then
grouped as:

Parameters in the group Group representative

1 Plasterboard Heat Capacity Plasterboard Heat Capacity
Plasterboard Thickness

2 Polystyrene Thermal Conductivity | Polystyrene Thermal Conductivity
Polystyrene Thickness

3 Left side Convective coefficient Left side Convective coefficient

4 Right side Convective coefficient Right side Convective coefficient

5 Solar efficiency Solar efficiency

Table 2.4. Active model parameters groups and groups representatives..
The phenomena in the model that can be tested using the available data are : heat conduction in
the plasterboard and the polystyrene layers, heat convection at the wall surfaces and the solar

processor.

Principal components analysis

The principal component analysis has been performed on the sensitivity time series corresponding
to the 7 active model parameters:
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(o =Ew 50 - F0

The spectral decomposition of the {(¢) - covariance matrix leads to

W= IC(t)C(t)Tdt =z’

with the following eigenvectors

0.0695 -0.2035 0.6106 -0.1020 0.0264 -0.7410 0.1442
0.5680 -0.0859 -0.2498 -0.2489 -0.3725 0.0161 0.6376
-0.5902 -0.5004 -0.3589 -0.2331 -0.4220 -0.1995 -0.0147
V= 0.0617 0.0012 -0.0286 0.8667 -0.4696 -0.1538 0.0019
-0.2329 0.8104 0.0332 -0.2516 -0.4293 -0.2004 -0.0144
-0.5123 0.0618 0.2716 0.1781 0.1559 0.2808 0.7246
0.0605 -0.2007 0.6003 -0.1646 -0.5033 0.5178 -0.2171

and the eigenvalues bellow

sziag[342.29 92.44 7698 0.38 0.0445 0.0061 0.0000]

The vector {(¢) then can be written as () =VX(¢), where X (¢)= [xl(t) X, () - x7(t)]T is
the vector of decomposition coefficients resulting from projection of () onto the eigen-basis V' . The
time evolution of the first five components of X (¢) is represented in figure 2.8. It can be seen that
only the first three components of X (¢) show significant fluctuations.

(°C) ’ ; - n? ) 0.08F

5353
AN

-0.02r

-0.04

-0.06r

. ‘ . . s s -0.08 ‘ . . s .
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (h) Time (h)

Figure 2.8. Time evolution of the X (t) vector components.

The resulting model parameters signatures (see eq. 2.38) are given in Table 2.5. They are defined as
the contribution of the principal components to the variance of the sensitivity time series. Table 2.5
shows that only the first three principal components significantly contribute to explain the variance of
the sensitivity time series associated to the active model parameters. In addition, it can be seen that
parameters 1 and 7 (plasterboard heat capacity and thickness), as well as parameters 2 and 6
(polystyrene thermal conductivity and thickness), exhibit similar signatures. This leads us to propose
the same parameter grouping than the one coming from correlations analysis (see Table 2.4).
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Contribution to the variance of the principal component number

1 2 3 4 5 6 7
0.0484 0.1119 0.8395 0.0001 0.0000 0.0001 0.0000
0.9524 0.0059 0.0414 0.0002 0.0001 0.0000 0.0000
0.7828 0.1520 0.0651 0.0001 0.0001 0.0000 0.0000
0.7846 0.0001 0.0378 0.1716 0.0059 0.0001 0.0000
0.2338 0.7647 0.0011 0.0003 0.0001 0.0000 0.0000
0.9369 0.0037 0.0592 0.0001 0.0000 0.0000 0.0000
7 0.0382 0.1138 0.8473 0.0003 0.0003 0.0000 0.0000
Table 2.5. Active model parameters signatures.

(G| W N =

As it was discussed in section 2.3, principal components analysis allows us to propose a new set of
truly independent parameters. Such parameters are defined as simple functions of the initial ones:

7

AD
Ayl:ze L), i=1,---7

where v is the (j,i) element of the matrix V. The sensitivity of the model output to these new

parameters is given by:

sz[(t) i=1,---7

aYl

Hence, y;, parameters significance can be studied by means of:
— the mean time and the standard deviation values of x,(%);
— the contribution of x;(¢) to the whole energy in {(#) (see eq. 2.42); and

— the statistical correlation existing between the residuals and x,(?) .

Sensitivity Sensitivit | Contribution | Correlation
mean value |y to the ({(¢) | with
standard energy residuals
deviation
Y, -0.7143 0.3402 0.6683 -0.9327
Y, 0.0138 0.4113 0.1805 0.2318
Y3 0.0751 0.3679 0.1503 0.0599
Y, -0.0049 0.0259 0.0007 -0.0013
Ys -0.0006 0.0090 0.0001 0.0956
Ye -0.0002 0.0033 0.0000 -0.0022
e 0.0000 0.0002 0.0000 -0.0723

Table 2.6. Results from the analysis of the y; parameters significance.

Table 2.6 shows that only the first three new parameters are really significant. Indeed, the first one
explains more than 65% of the whole energy in ((¢). In addition, it is the only parameter showing a

significant effect on the model static behaviour (remember that the main problem in the model
concern the static regime) as well as a high degree of correlation with residuals.
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Consequently, a preliminary diagnosis of the model could be intended from first eigenvector (first
column of the matrix V7). It has been represented if figure 2.9, where we can see that physical
parameters showing a greater contribution to y, value are: the polystyrene layer thermal conductivity
and thickness (parameters 2 and 6), the left side convective coefficient (parameter 3) and the solar
efficiency (parameter 5). Improving the model performances likely involves significant changes in the
values of these parameters. This probably means that the thermal conduction modelling, the heat
convective flux at the wall-air interface representation and the solar processor must be reviewed. Such
preliminary conclusions must be however confirmed by optimisation techniques.

0.6

T T T T T T T

Cl coefficients

041 b

0.2f J

0.6 . . . . . .
0 1 2 3 4 5 6 7 8

Physical parameters

Figure 2.9. First eigenvector representation.

Optimisation and diagnosis

The model has been fitted on the available data to estimate the group representatives in table 2.7
(free model parameters). We have applied both the Gauss-Newton method (GNM) and the HBA
developed by us. The results achieved are presented in Table 2.7. First of all, we can see that no
fundamental differences concerning diagnosis are observed between Gauss-Newton and HBA
methods. The parameter set proposed by the HBA includes the parameter vector estimated by the
Gauss-Newton algorithm.

Concerning residuals, the solution proposed by GNM significantly improves the model behaviour.
The residuals mean value is -0.04°C and standard deviation is 0.2°C. Simulations uncertainty bands
over the parameter set proposed by HBA are represented in figure 2.10. We can see that ~100% of
measurements fall into these bands.

Nominal value | Gauss-Newton Bounding method
estimations estimations
Plasterboard Heat Capacity 680.0 635.8 [646.0, 650.3]
Polystyrene Conductivity 0.043 0.063 [0.059, 0.078]
Left side Convective coefficient 4.0 247 [1.93, 3.43]
Right side Convective coefficient 4.0 3.99 [4.46, 4.81]
Solar efficiency 0.008 0.0034 [0.0025, 0.0026]

Table 2.7. Active model parameters nominal values and estimations.
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Figure 2.10. Simulation uncertainty bands over the parameter set solution and measurements.

From Table 2.7, we can conclude that improving the model behaviour implies strongly
modifications of the thermal conductivity of the polystyrene layer, the heat convective coefficient at
the wall left side, and the solar efficiency. Values for the first one must be increased, and values for
the second and third one have to be decreased. Hence, modelling heat transfer conduction must be
reviewed (the augmentation of the conductivity suggest the existence of thermal bridges or nominal
material properties not fully matching the final as-constructed conditions of the test cell), the solar
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processor have to be improved, and the heat convection representation at the wall-air interfaces must
be reviewed too.

2.6. COMPUTER IMPLEMENTATION

Two main tools for validation purposes have been developed within IEA’s Task 22: MED
(Modelling Errors Diagnosis Tool) and MEDLab (Matlab Modelling Errors Diagnosis Tool). There are
briefly described in this section. Please, contact the authors for getting the corresponding B-versions
and the user manuals [21, 22].

MED

MED is an ensemble of Fortran codes and Unix procedures that does not include any modelling-
simulation environment. Fortran codes contain validation methods and algorithms, and Unix
procedures serve for MED codes and simulation environment management.

The link between MED and a modelling-simulation environment is made by means of some
“bridges” files. The modelling-simulation environments that have been already connected to MED
are:

— M2m [23], developed by the Groupe Informatique et Systémes Energétiques of the Ecole
Nationale des Ponts et Chaussées (GISE-ENPC).

— Clim2000 [24], developed at Electricité de France (EDF). The Clim2000 solver is ESACAP [25].

— CA-SIS [26], an EDF’s modelling-simulation environment based on TRNSYS [27].

MED has been tested both on SUN and HP Unix workstations. The MED graphical interface is
based on Gnuplot [28].

MED allows:

— Checking model validity as described in section 2.2 (residuals main characteristic analysis,
comparisons between model outputs uncertainty bands and measurements, and calculation of
the spectral domain of application of the model).

— Model diagnosis using spectral residuals analysis techniques. PAMTIS [29, 30], the software
package for residuals analysis developed in PASSYS, has been included in MED.

— Modelling errors diagnosis by model parameters space analysis techniques as described in
section 2.3 (sensitivity analysis and optimisation).

The ensemble of methods included in MED is summarized in Table 2.8:

SPECTRAL ANALYSIS Power spectra calculations

Spectral test for model applicability
Multiple squared coherence function
Test for zero multiple coherence
Partial squared coherence functions
PARAMETERS SENSITIVTY | Parameter-perturbation method
ANALYSIS Screening based on mean and variance
values

Parameters correlation matrix calculations
MODEL OUTPUTS BOUNDS | Standard Monte Carlo methods

PSV interacting approximation [21]
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OPTIMISATION Pure random search algorithm
Multi-start random algorithm [21]
Branch and bound algorithm [21]
Table 2.8. Methods and algorithms in MED.

MEDLab

MEDLab has been developed under Matlab. Contrary to MED, it only addresses linear models. It
is then more restrictive than MED but implemented methods are more efficient. As MED, it does not
include any modelling environment. It has been already linked to M2m [23] and to Clim2000 [24].

MEDLab allows:

— Checking model validity as described in section 2.2 (residuals main characteristic analysis,
comparisons between model outputs uncertainty bands and measurements, and calculation of
the spectral domain of application of the model).

— Modelling errors diagnosis by model parameters space analysis techniques as described in
sections 2.3 and 2.4 (sensitivity analysis and optimisation).

The ensemble of methods included in MEDLab is summarised in Table 2.9:

RESIDUALS ANALYSIS Trends, means and standard deviations
Power spectra calculations

MODEL OUTPUTS BOUNDS | Standard Monte Carlo method
Sensitivity based method
SENSITIVITY ANALYSIS Sensitivity-equation method

Screening based on mean and variance
values

Parameters correlation matrix calculations
Principal components analysis
OPTIMISATION Gauss-Newton method

Random search algorithm

Heuristic bounding algorithm

Table 2.9. Methods and algorithms in MED Lab.

2.7. SUMMARY AND CONCLUSION

The IEA empirical model validation approach has been presented in this chapter. Two main steps
can be distinguished in this approach:

Checking model validity. The objective is to test the model performances by identification of
significant disagreements between measurements and simulations. It involves residuals analysis,
simulations-measurements consistency analysis, and the estimation of the model spectral domain of
application. Standard mathematical tools have been proposed for reaching such an objective.

Model diagnosis. Main objective of this step is to explain the differences observed between
measurements and simulations and to propose model improvements. This means going up from the
observed disagreements to the faulty modelling hypothesis. A new approach based on the model
parameters space analysis has been developed. It involves:

» Sensitivity analysis. The principal aim of this part if to identify the parts of the model as well as
physical phenomena that can be really tested on the available data. Sensitivity calculations,
correlation analysis and principal components analysis are the main tools proposed to reach
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this objective. Some preliminary elements for diagnosis are already supplied by PCA at this
stage.

Optimisation. Parameters estimation techniques are the main mathematical tool we are
proposing to guide model diagnosis. Free model parameters values allowing significant
residuals reduction are here identified by fitting the model on the available data. Diagnosis
mainly involves comparisons between estimated and nominal model parameters values. Three
different algorithms for optimisation have been proposed and discussed.

Diagnosis. The possible causes of discrepancies between measurements and simulations are
finally elucidated using;:

Some knowledge about the model. The main information required concerns the
phenomena considered in the model and the parameters involved in their representation.

Modelling hypothesis analysis. Foreseeable model parameter values for each one of the
hypothesis in the model, as well as for their negative statement, are desired but difficult to
obtain. Instead, some knowledge about what kind of model parameter displacements are
expected when inadequate modelling hypothesis, can be used. For instance, un-modelled
thermal bridges (when significant) will lead to systematic increasing of thermal
conductivity values when fitting the model to the data.

Parameter changes analysis. It involves comparisons between estimated and nominal
model parameters values. Large differences are expected for parameters involved in
phenomena which are not correctly represented in the model.

The combination of these three elements of judgement should lead to know reasons for the
observed model errors, and to suggest model improvements.



Chapter 3

APPLICATION TO THE VALIDATION OF
THE THERMAL MODEL OF AN ACTUAL
BUILDING

The methodology and the methods described in the previous chapter are here applied for testing
modelling hypothesis in the framework of the thermal analysis of an actual building. The
experimental device (ETNA building) is described in section 3.1. Next section includes
experimental design matters and a qualitative analysis of the recorded data. The adopted
modelling hypothesis and the resulting model are presented in section 3.3. Model validation and
diagnosis results are contained in next sections. Two French modelling-simulation environments
have been used: CLIM2000 and CA-SIS. Results for the first one are included in this chapter. On
the contrary, CA-SIS results are presented in Annex B.

3.1. THE EXPERIMENTAL DEVICE

ETNA is an experimental building that has been specifically designed by EDF for empirical model
validation purposes (see Fig. 3.1). It is 30° south oriented and it is located near Paris. It is formed by
two identical and symmetrical testing rooms (41.3 m3), surrounded all over, the south facade
excepted, with guard zones where the air temperature can be controlled (see Fig. 3.2). The testing
room with an almost 100% convective heating device (fest cell in the following), is here considered.
The air in the room can be stirred in order to ensure a homogeneous air temperature distribution. The
construction of the building is deemed to be known with good confidence (see [31] for a detailed
description). The building has been designed to minimise both thermal bridges effects and
infiltrations. The permeability measurements carried out allows considering that thermal losses
generated by infiltrations are negligible.

Figure 3.1. Photograph of the ETNA building.
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Figure 3.2. ETNA building sketch (horizontal cutting)

The test cell components and the walls composition are presented in Tables 3.1. and 3.2
respectively. The floor and the ceiling are described in figures 3.3 and 3.4 respectively.

Component Surface Slop (°)  Orientation Controlled
(m?) (°S) Environnement

South wall 7.25 90 30 -
West wall 11.81 90 120 Computer room
North wall 7.00 90 210 Cell bis
East wall 10.17 90 290 Air-lock
Ceiling 16.28 0 - Attics
Floor 16.28 180 - Basement
South glazing 0.967 90 30 -
South framework 0.665 90 30 -
East glazing 0.967 90 290 Air-lock
East framework 0.665 90 290 Air-lock
Door 1.89 90 210 Cell bis

Table 3.1. Test cell components.

North wall 7.0 m? East wall 10.17 m? | Glazing 0.967 m?
Plasterboard 0.013m | Plasterboard  0.01 m Glass 0.04 m
Honeycomb 0.046 m | Polystyrencl:2 0.08 m Air3 0.007 m
Plasterboard 0.013m | Air4 0.01 m Glass 0.04 m
Styrodur 0.06 m HollowBlocks 0.2m

Aird 0.0l m

Polystyrencl:2  0.08 m
Plasterboard 0.0l m
Southwall 7.25m? West wall 10.17 m2 | Frameworks 0.665 m2
Plasterboard 0.01 m Plasterboard 0.0l m ColonialTimber 0.06 m

Polystyrencl: 0.08 m Polystyrencl:2  0.08 m

2

Airl 0.01 m Airl 0.0l m Door 1.89 m?
Hollowblock 0.2 m Hollowblocks 0.2m HollowDoor 0.044 m
S

Facing 0.02m Facing 0.02m

Table 3.2. Walls composition description from an outward direction.
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Concrete (0.05 m)
Styrodur (0.05 m)
Concrete (0.065 m)

Polystyrene (0.12 m)

4%— Polystyrene (0.03 m)

<®— Particle board

Air gap

Plank

Iron tie

Glass wool

Plasterboard
Wall paper

The thermophysical properties of the test cell materials are included in Table 3.3. The optical
properties of the windows glazing are given in Table 3.4.

Material L (wm' K" pey(k)m”®K") | Material L (wm' K" pey(k]m® K™
Airl 0.071 1.24 HollowBlocks  1.052 1140.0
Air2 0.762 62.5664 HollowDoor 0.090 275.0
Air3 0.063 1.24 Honeycomb 0.287 34.974
Beamsl 0.382 522.56 Particleboards  0.170 840.0
Beams2 0.211 277.535 Plasterboard 0.350 680.0
ColonialTimbe 0.250 1680.0 Polyamide 0.300 1200.0
r

Concrete 1.750 2090.0 Polystyrenecl:2  0.043 18.0
Concrete* 1.390 1957.0 Polystyrenecl:3  0.040 21.6
Facing 1.150 1657.5 Styrodur 0.032 21.6
Glass 1.150 2025.0 Styrodur2505  0.029 42.0
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| GlassWool 0.042 8.8 |
Table 3.3. Thermophysical properties of the materials.

© 10 10 20 30 40 50 60 70 80 90

o [0.104 | 0.104 | 0.107 | 0.110 | 0.114 | 0.119 | 0.123 | 0.127 | 0.121 | 0.000

T |0.683 | 0.680 | 0.672 | 0.656 | 0.633 | 0.597 | 0.540 | 0.442 | 0.220 [ 0.000
Table 3.4. Glazing optical laws (a = solar absorptance; t = solar transmittance).

3.2. THE EXPERIMENTAL DESIGN AND THE DATA

Test cell configuration and recorded data

The experiment carried out in the test cell from 25/02/95 to 19/03/95 (23 days) is here analysed.

The test cell configuration during the experiment was as follows:

Guard temperatures were controlled at approximately 10°C.

Internal heating was conducted by an electrical heat source. A binary pseudo random sequence
was used to drive heater operation (on/off). The smallest heating period was 5 minutes, and
the nominal value was 500W (see Fig. 3.7).

The air inside the test cell was stirred using a fan to warrant temperature homogeneity. The fan
is on when the heating power is on, and it is off otherwise.

All data were measured at a 5 minutes time step, except solar radiation which was measured at 1

minute time step. The data were then averaged and under-sampled at 1 hour time step.

The following meteorological variables were actually measured:

— Global solar radiation on the south vertical wall - 30°W oriented wall (see Fig. 3.6).

— Outdoor dry bulb temperature and guard temperatures (see Fig. 3.5).

The variables recorded inside the test cell are:

Heating power (see Fig. 3.7).

Indoor air temperature, that was taken as a space average of several shielded dry-bulb
temperature sensors (see Fig. 3.8).

The mean radiant temperature, which was taken as the average of three black globe
temperature sensors (see Fig. 3.8).

The wall indoor surface temperatures, which were taken as the average of several surface
temperature sensors (see Fig. 3.9).
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Figure 3.5. Outdoor temperature measurements (dashed line) and air temperature in the test cell
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Figure 3.6. Solar irradiance on the south vertical wall.
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Figure 3.7. Heating power measurements.
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Figure 3.8. Indoor air temperature (continuous line) and mean radiant temperature measurements (dashed
line).
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Figure 3.9. Indoor wall surfaces temperatures.

Qualitative data analysis

In Fig. 3.10 are represented black globe temperature data against indoor air temperatures. The
differences observed between them are always less than 1°C, the black globe temperature being most
of the time colder than the air temperature. So small differences are a little bit surprising because
greater ones are observed between the air and the indoor test cell surfaces. To understand this
behaviour, it must be noticed that:

— The measured black globe temperature does not represent the mean radiant temperature. The
last one can be certainly estimated from the globe temperature, the air temperature and the
indoor air velocity data, but it cannot be directly taken as the spatial average of the globe
temperatures as supposed before. The temperature of the globe thermometer is the result of
both the radiative exchanges between the globe and the wall surfaces, and the convective
exchanges between the globe and the indoor air.

— The indoor air temperature is measured using non-ventilated shielded (solar radiation
protection) temperature sensors. Consequently, the recovered air temperature data could be
corrupted (underestimated) by the wall surfaces temperatures, which are most of the time
colder than the air temperature.

Probably both, the black globe temperature and the air temperature date are close to the so called
«resultant temperature », which take values in between the actual mean radiant and indoor air
temperatures.
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Figure 3.10. Air temperature data vs. Black globe temperature data.

The wall surface temperatures (indoor side) are represented against the measured indoor air
temperatures in figures 3.11 (south, west, north, west and ceiling) and 3.12 (floor). It can be seen that
most of the time the temperature of the wall surfaces is smaller than the air temperatures. This is a
reasonable behaviour because:

— one of the main inputs to the test cell is the heating power;

— the heating system can be assumed to be a pure convective heater (the air inside the cell was
stirred);

— the outdoor wall surfaces are in contact with an air mass at approximately 10°C (thermal
guards), or lower (south wall).

Due to a higher inertia, the thermal behaviour of the floor surface is slightly different from the one
of the others wall surfaces. The proportion of time during which the floor surface temperature is
higher than the air temperature increases, and the difference between both quantities can be greater
than 2-3°C.
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Figure 3.11. Air temperature data vs. Wall surfaces temperature data.
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Spectral analysis of the data

The analysis of the model inputs spectra allow to identify the frequency ranges over which the
building and hence the model are mainly excited. It is within these ranges that one should expect
exhibit any modelling error. Figure 3.13 shows the estimated density power spectra for the three main
building inputs: the outdoor air temperature, the solar radiation flux (global, horizontal), and the
heating power. In figure 3.14, their respective normalized cumulative spectra are shown. The analysis
of such statistics leads to the following conclusions:

— Outdoor temperature. More than 97% of the variance is concentrated over the frequency range
[0, 1/10 h™] (see Fig. 3.14). It exhibits a clear 24 hperiodicity, as well as spectral peaks (variance
concentration) at 1/12 h” and 1/6 h” frequencies (see Fig. 3.13).

— Solar radiation. More than 95% of the variance is concentrated over the frequency range [0, 1/7

h'] (see Fig. 3.14). As in the previous case, it exhibit a clear 24 h periodicity and a spectral peak
at1/12h*.

— Heating power. It is an input with significant spectral power over the whole frequency range.
95% of its variance is concentrated over the frequency interval [0, 1/3 h"]. Up to frequency 1/10
h”, no more than 50% of the signal variance is found.

10° : : : :
Spectraf density ---- Qutdoor temperature
— Solar irradiance
wt N Heating power i

\ v

0 0.1 0.2 0.3 0.4 0.5
Frequency (h-1)

Figure 3.13. Inputs data spectral density.
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Figure 3.14. Inputs data cumulative spectra.

The spectra of the temperature time series describing the building response (air temperature, black
globe temperature and wall indoor surface temperatures) are represented in figures 3.15 (density
power spectra) and 3.16 (normalized cumulative spectra). From their analysis, it can be concluded
that:

— The building acts as a low-pass filter. 95% of the variance of the wall surface temperatures is
distributed over the [0, 1/20 h"] frequency range (see Fig. 3.16). The variance of both, the air
and the black globe temperatures, is mainly concentrated over the range [0, 1/10 h™].

— All the observed temperature time series are 24 h and 12 h harmonic (see Fig. 3.15).
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3.3. THE NOMINAL TEST-CELL MODEL

Clim2000 [24] is a modelling-simulation environment developed by EDF for thermal buildings
analysis purposes. It is based on electrical analogy and models are supplied as electrical networks.

Modelling hypothesis

The main modelling hypotheses are classified by physical phenomena as follows:

— Heat conduction phenomena: a) Heat conduction is considered as a one dimensional process,
thermal bridges are not modelled. An equivalent homogeneous-multilayer wall is used for
representing both the floor and the ceiling (see Table 3.4). b) Constant thermophysical
properties are assumed for all the materials in the test cell (see Table 2 for nominal values). c)
Perfect contact between layers is supposed.

— Long-wave radiative exchanges and heat convective flux at the wall-air interfaces: The global

convective-radiative flux at any solid-air interface is estimated as: ¢ = h(];l{r/ace - 7;1.,,) where h is

a constant exchange parameter taking into account both radiative and convective exchanges.
Standard values for coefficients  are adopted.

— Indoor air and heating power treatment: a) The indoor air temperature is supposed to be
homogeneous. Hence, the air is represented by a single node in the model. b) Air infiltrations
are assumed to be zero. c¢) The output from the heater is assumed 100% convective. The
electrical heating power is entirely transmitted to the indoor air node. d) The heater inertia is
neglected.

— Solar radiation processor: a) The solar irradiance on the vertical south facade is calculated from
the available horizontal global and diffuse irradiance data. Diffuse solar radiation is assumed to
be isotropic, and the soil reflectivity is supposed to be 0.2. b) The assumed glazing optical
properties are given in Table 3.4. ¢) Incoming solar radiation is supposed to be completely

absorbed by the floor.

Floor 16.28 m* | Ceiling 16.28 m’
Concrete* 0.05 m Plasterboard  0.013 m
Styrodur2505  0.05 m GlassWool 0.20 m
Polyamide 0.002m |Air2 0.10 m
Concrete 0.065m | Particleboard 0.021 m
Beams?2 0.07 m

Beamsl 0.05m

Polystyrencl:3  0.03 m

Table 3.4. Walls composition description from an outward direction.

The model

The electrical network created by Clim2000 has been transformed in a state-space model of the
form:

dT(1)
C=_ == AT()+EU()

y() = HT ()

where T'(¢) is the vector of temperatures at the nodes of the discretisation mesh, U(¢) is the vector of
the model input variables, and y(#) represents the model output. C is a diagonal matrix including
thermal capacities at the discretisation nodes, 4 is a squared symmetric matrix including parameters
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describing thermal exchanges among nodes, and E is a matrix that contains system-environment
coupling parameters . Matrix /{ is formed by zeros and ones, it serves to select model outputs.

The model output is the indoor air temperature. Model input variables are :

the solar irradiance on the test cell vertical south facade ;

the heating power ;

— the outdoor air temperature; and

the air temperature in every guard zone (5 zones).

The model includes 170 modifiable parameters:

Parameters
Component Geometry Thermophysica Optical Total
1

Floor 8 16 1 25
North wall 5 10 1 16
West wall 6 12 1 19
South wall 6 12 2 20
East wall 8 16 1 25
Ceiling 5 10 1 16
South window 6 12 4 22
West window 6 12 2 20
Door 2 4 1 7

170

Table 3.5. Number of parameters in the model.

Blind model validation

Model simulations have been carried out using hourly data in figures 3.5 to 3.7 as input variables.
The differences between indoor air temperature measurements and simulations are represented in
figure 3.17. The model underestimates the indoor air temperature during the first four days,
afterward it globally overestimates it. Temperature underestimations and temperature
overestimations are respectively associated to the free-floating and to the heating periods.

The mean value of the residuals is -0.22°C and its standard deviation is 0.72°C. The model is
unable to correctly reproduce both the static and the dynamic thermal behaviour of the test cell.
Figure 3.18 includes the power spectral density of the residuals. It shows that residuals variance is
mainly concentrated at low frequencies.
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Figure 3.18. Residuals power spectral density

For checking model validity purposes, parameters uncertainty is assumed to be:

0.<[0.90, 1.10, ] i=1,--170
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where 0, represents the nominal value of the i i parameter.

Model output bounds over the parameter set above are calculated by the standard Monte Carlo
method described in section 2.2. Figure 3.19 includes the time evolution of the upper and lower
model output bounds (continuous lines) as well as measurements. It can be seen that measurements
are most of the time (59%) outside the model uncertainty bands. The nominal model is unable to
represents the thermal behaviour of the test cell.

24 T T T
Temperpture (°C)

22

T
Lyt
T

20

o 1

16

141

12+ -
I — Minimum

— Maximu
10 + Measures A

8 1 L 1
0 0.5 1 1.5 2

Time (s) x 10°

Figure 3.19. Results from checking model validity: Model output uncertainty bands (continuous lines) and
measurements (crosses) comparison.

3.4. PARAMETERS SENSITIVITY ANALYSIS

Indoor air temperature sensitivity to every model parameter has been calculated by the sensitivity-
equation method (see section 2.3 and Annex A).

Test cell components

Tables 3.6 to 3.14 present sensitivity analysis results for the different test cell components: the floor,
the north wall, the west wall, the south wall, the east wall, the ceiling, the south window and the west
window. They include active model parameters related to each one to the test cell components:

Column  Contents

1 Parameters Group

2 Parameters in the group

3 Mean time value of the indoor air temperature sensitivity to the
parameter (see equation X)

4 Standard deviation of the indoor air temperature sensitivity to the

parameter (see equation X)
5 Distance (see equation X)
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The following criteria have been applied to choose active parameters and to form groups:

A parameter 0, is assumed to be active when

d =\ +o’>0.1

L; and O, are respectively the mean time value and the standard deviation of the indoor air

temperature sensitivity to the i" parameter.

Parameters in a same group T, = {91. 0 ;o Gm} show correlation degrees greater that

0.8. That is, they verify

Vi,j o p,|208

where p; is the linear correlation (see equation 2.29) between the sensitivity time series

associated to parameters 6, and 9, .

Main conclusions from results in tables 3.6 to 3.14 are:

FLOOR. Three groups of active parameters concerning thermal conduction have been
identified (F1, F2 and F3), as well as a group concerning convection at the floor-indoor air
interface (F4) and a group related to solar absorption (F5). This is one of the test cell
components offering a priori greater possibilities for validation.

NORTH WALL. Three groups of active parameters have been identified. The first one
includes parameters related to the heat conduction through the wall (N1), the second one
concerns heat convection exchanges between the wall and the indoor air (N2), and the third
one is the wall surface (N3).

WEST WALL. All the active parameters related to the west wall modelling are strongly
correlated among them; they are merged in a same group (W1). This component does not
offer many possibilities for validation.

SOUTH WALL. Active parameters related to heat conduction through the wall form a unique
group (S1). In the second group (S2) are merged the outdoor convective coefficient and the
optical efficiency of the wall surface. The third group (S3) contains the heat convective
coefficient at the wall-indoor air interface

EAST WALL. Four groups of active parameters have been identified. The first and the second
one include parameters associate to the heat conduction modelling through the wall (E1 and
E2). Next groups (E3 and E4) contain parameters related respectively to the heat convection at
the wall-indoor air interface and to the solar radiation absorption.

CEILING. Heat conduction is represented by three groups of parameters (C1, C2 and C4),
and the third group includes the wall surface optical efficiency.

SOUTH WINDOW. Active parameters of this component form three groups. The first one
(SW1) represents heat conduction, the second one (SW2) concern solar absorption and the
third one (SW3) is related to the heat convection between the glazing and the indoor air.
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WEST WINDOW. Active parameters related to heat conduction are merged with outdoor
convective parameters in a same group (WW1). The wall-indoor air convective coefficient
defines the second group (WW2).

DOOR. All its active parameters are in the same group (D1). This component does not offer
many possibilities for validation.

Group Parameters Mean STD Distance
F1 Concrete* - Thermal capacity -0.1560 | 0.6379 0.6567
Concrete* - Thickness -0.1426 | 0.6281 0.6440
Surface -1.3044 | 0.8734 1.5699
F2 Styrodur - Thermal conductivity -0.6931 | 0.1813 0.7164
Styrodur - Thickness 0.6285 0.1627 0.6492
F3 Beams2 - Thermal conductivity -0.1032 | 0.0352 0.1091
Polystyrene - Thermal conductivity -0.2219 | 0.0890 0.2391
Polystyrene - Thickness 0.2042 0.0797 0.2192
F4 Indoor h- coefficient -0.0586 | 0.4687 0.4724
F5 Optical efficiency 0.1251 0.0718 0.1442
Table 3.6. FLOOR. Active model parameters and groups.
Group Parameters Mean STD Distance
N1 Styrodur - Thermal conductivity -0.5850 | 0.1197 0.5971
Styrodur - Thickness 0.5322 0.1090 0.5432
N2 Indoor h- coefficient -0.8620 | 0.1673 0.8781
N3 Surface -0.6836 | 0.1631 0.7028

Table 3.7. NORTH WALL. Active model parameters and groups.

Group Parameters Mean STD Distance

w1 Polystyrene - Thermal conductivity -0.8826 | 0.1803 0.9009
Polystyrene - Thickness 0.8550 0.1649 0.8217
Surface -1.0121 | 0.2091 1.0334

W2 Indoor h- coefficient -0.8620 0.1673 0.8781

Table 3.8. WEST WALL. Active model parameters and groups.

Group Parameters Mean STD Distance
S1 Polystyrene - Thermal conductivity -0.8131 | 0.1840 0.8337
Polystyrene - Thickness 0.7418 0.1695 0.7609
Surface -0.9265 | 0.2446 0.9583
S2 Outdoor h-coefficient -0.2036 | 0.1096 0.2312
Optical efficiency 0.1767 0.1189 0.2130
S3 Indoor h-coefficient -0.8620 | 0.1673 0.8781

Table 3.9. SOUTH WALL. Active model parameters and groups.

Group Parameters Mean STD Distance
E1 Polystyrene *- Thermal conductivity -0.2700 | 0.0637 0.2775
Polystyrene *- Thickness 0.2454 0.0558 0.2517
E2 Polystyrene - Thermal conductivity -0.2573 | 0.0587 0.2639
Polystyrene - Thickness 0.2346 0.0539 0.2407
Surface -0.5335 | 0.1472 0.5534
E3 Indoor h- coefficient -0.8620 | 0.1673 0.8781
E4 Optical efficiency 0.0921 0.0630 0.1116

Table 3.10. EAST WALL. Active model parameters and groups.
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Group Parameters Mean STD Distance
C1 Plasterboard - Thermal capacity -0.0128 | 0.1464 0.1469
Plasterboard - Thickness -0.0077 | 0.1450 0.1452
C2 GlassWool - Thermal conductivity -0.6898 | 0.1438 0.7047
GlassWool - Thickness 0.6272 0.1316 0.6409
C3 Optical efficiency 0.1280 0.0884 0.1555
C4 Surface -0.6428 | 0.1989 0.6729

Table 3.11. CEILING. Active model parameters and groups.

Group Parameters Mean STD Distance
SW1 Air - Thermal conductivity -0.2326 | 0.0825 0.2468
Air - Thickness 0.2120 0.0753 0.2250
Colonial Timber - Thermal conductivity -0.1804 | 0.0734 0.1947
ColonialTimber - Thickness 0.1631 0.1107 0.1972
Glass surface -0.7230 | 0.2605 0.7685
Frame surface -0.3492 | 0.1298 0.3725
SW2 Glass optical efficiency 0.2700 0.1865 0.3282
Frame optical efficiency 0.1525 0.0969 0.1807
Outdoor h-coefficient -0.7638 | 0.1838 0.7857
SW3 Indoor h-coefficient -0.8620 | 0.1673 0.8781

Table 3.12. SOUTH WINDOW. Active model parameters and groups.

Group Parameters Mean STD Distance

WW1 Air - Thermal conductivity -0.2314 | 0.0472 0.2362
Air - Thickness 0.2110 0.0431 0.2153
Outdoor h-coefficient -0.3130 | 0.0641 0.3195
Glass surface -0.6983 | 0.1414 0.7125
Frame surface -0.3498 | 0.0715 0.3570
Colonial Timber - Thermal conductivity -0.1843 | 0.0376 0.1881
Colonial Timber - Thickness 0.1660 0.0359 0.1698

WW2 Indoor h-coefficient -0.8620 | 0.1673 0.8781

Table 3.13. WEST WINDOW. Active model parameters and groups.

Group Parameters Mean STD Distance

D1 HollowDoor - Thermal conductivity -0.4464 | 0.0900 0.4554
HollowDoor - Thickness 0.4052 0.0825 0.4135
Outdoor h-coefficient -0.1003 | 0.0202 0.1023
Surface -0.6327 | 0.1258 0.6451

D2 Indoor h-coefficient -0.8620 | 0.1673 0.8781

Table 3.14. DOOR. Active model parameters and groups.

Whole test cell

Sensitivities correlation analysis has also been carried out on the whole set of active parameters.
Results achieved are included in Table 3.15. Ten “quasi-independent” groups of active model
parameters have been identified (meta-groups in the table, MG below):

* MGI1, MG2 and MG3. These three independent meta-groups contain only parameters related
to the heat conduction though the floor.

* MG4. The only parameter in this meta-group is the heat convective coefficient between
indoor vertical walls and the indoor air.
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MGS. This meta-group merges the coefficient describing heat convection between the floor
and the indoor air with two parameters concerning heat conduction through the ceiling.

MG6. Active model parameters related to the heat conduction through the south wall as well
as those concerning heat conduction through the south window are included in this meta-

group.

MG?. Optical properties of the floor, the south wall, the east wall and the ceiling appear in
this meta-group. It also includes the heat convective coefficient associated to the south wall -
outdoor air interface.

MGS. This meta-group merges a high number of active parameters related to heat
conduction. Those of the door, the west wall and the west window as well as part of
parameters involved in the heat conduction modelling through the west wall, the east wall
and the ceiling.

MG9. The surface of the north wall, the surface of the ceiling and the thermal conductivity of
the polystyrene layer in the east wall are this group. It must be noticed that some statistical
correlation remains among parameters in this meta-group and those in the previous one.

Test-cell
components Chosen representative
groups
Meta Group n°1 F1 Floor surface area

Meta Group n°2 F2 Floor styrodur layer conductivity

Meta Group n°3 F3 Floor polystyrene layer conductivity

Meta Group n°4 N2 Indoor vertical walls convective coefficient
Meta Group n°5 F4 Indoor floor/air convective coefficient

c1
Meta Group n°6 S1 South wall surface area
SwWi1
Meta Group n°7 F5 Solar efficiency of the south wall (outdoor surface)
S2
E4
C3
Meta Group n°8 N1 Ceiling Glass Wool layer conductivity
E1
C2
WW1
w1
D1
Meta Group n°9 N3 North wall surface area
E2
C4
Table 3.15. TEST CELL. Active model parameters groups and group representatives.

Model validation possibilities on the available data are quite limited. At most, modelling of the

following parts and phenomena could be tested:

— Heat conduction through the floor.

— Heat convection between vertical walls and the indoor air.
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— Heat conduction through the south facade without making distinction between the wall
and the window.

— Heat conduction through the west, east, north and ceiling test cell envelope.

—  Part of the solar processor.

Preliminary diagnosis

For preliminary diagnostic purposes, only one parameter by meta-group is taken into account.
Principal components analysis is thus carried out on the sensitivity time series associated to the
parameters in the third column of Table 3.15"

O = (® Syea® - Suee®]

The spectral decomposition of the {(¢) - covariance matrix leads to

W= jg(t)g(t)fdz =yzy’

where X is a (9x9) diagonal matrix including the singular values of {(#), and V' is a (9x9)
squared matrix including the corresponding eigenvectors placed by columns.

The vector {(¢) then can be written as {(¢) =VX(¢), where X(¢)= [xl(t) X, () - x9(t)]T is
the vector of decomposition coefficients resulting from projection of {(¢) onto the eigen-basis V. The
time evolution of the components of X () is represented in figure 3.20. It can be seen that only the
first two components show significant fluctuations.

" Remember that a meta-group parameter representative represents the effect of the whole set of parameters
in the meta-group. We note them MG1 to MG9 in the following.
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Table 3.16 includes some statistical analysis on the X (#) components: the time mean value, the
standard deviation, the contribution to the whole energy in {(#) (see equation 2.42) and the linear
correlation between residuals and the X(f) components. It can be seen that the first component
explains more than 87% of the whole energy in {(7) . In addition, it shows a significant effect on the
model static behaviour (remember that the main problem in the model concern the static regime) as

well as a high degree of correlation with residuals.

Mean value Standard Contribution to Linear
Deviation the whole correlation
variance of {(¢) | with residuals

x, () -2.3091 0.6293 0.8740 -0.6010
x, (1) -0.1751 0.7445 0.0891 -0.1786
x5 (1) 0.0098 0.3526 0.0189 0.0085
x, (1) -0.0054 0.2817 0.0121 0.4942
x5(2) -0.0078 0.1505 0.0035 0.1849
x(2) -0.0019 0.1020 0.0016 0.0167
x; (1) 0.0007 0.0667 0.0007 0.2088
xg () 0.0002 0.0224 0.0001 0.1386
x,(2) 0.0002 0.0141 0.0000 -0.0688

Model output changes due to small variations in active model parameters can be thus approached

by (see section 2.3):

Table 3.16. Statistical analysis on the X (t) components.
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Ay (1) = Ayyx, (1) with Ay, :A_elvn +A_62"21 +"'+A_69V91

lo 20 e90

where 0, and A®, represent respectively the nominal value and the variation of the i” model
parameter. The previous equation shows that the effect of parameters on the model output are
weighted by the elements {Vn }izl o of the first eigenvector of the basis V.

In Figure 3.21, the first eigenvector {vil}

._1...o has been represented. It can be seen that:

—  The first meta-group of parameters is the one showing a greater contribution to the model
output variations. It includes active model parameters related to heat conduction through
the first layer of the floor.

— Meta-groups 6 and 4 have also a significant effect on the model output. The first one
represents heat conduction through the south facade (wall and window included), and the
second one is the convective coefficient at the indoor air-vertical walls interfaces.

— Next meta-groups in order of significance are meta-groups 2, 8 and 9. Meta-group 2
includes parameters related to heat conduction through the floor, and meta-groups 8 and 9
represent heat conduction through the north, east, west and ceiling test cell envelope.

Improving the model performances likely involves significant changes in the values of these
parameters. This probably means that modelling of thermal conduction as well as heat convection at
the wall-air interfaces have to be reviewed. Such preliminary conclusions must be however confirmed
by optimisation techniques.

First eigenvector
0.7

0.5

0.4

0.3]

0.2[

Meta-Group of active parameters
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Figure 3.21. First eigenvector of the basis V . The meta-groups MG1 to MG9 are represented by the model
parameters in the third column of Table 3.15.

3.5. FREE MODEL PARAMETERS ESTIMATION AND DIAGNOSIS
Fitting the model on the available data has been performed by the following three methods:

— The heuristic bounding methods (HBM) described in section 2.4. It allows finding the
parameters domain leading to model output uncertainty bands showing a significant
overlapping with measurements uncertainty intervals.

— The random search algorithm (SRA) described in section 2.4. It is a stochastic algorithm for
searching the global minimum of the residuals variance on a given parameters set. The
parameter set we are using is the one proposed by the HBM.

— The Gauss-Newton method (GNM) described in section 2.4. It considers the problem of
finding a local minimum of the residuals variance from an initial parameter vector. The
initial parameter vector we are using is the one of nominal values.

In all the cases, free model parameters considered for optimisation are the meta-groups
representatives in Table 3.15. The solutions proposed by the different methods are summarised in
Table 3.17. Looking at the results from the HBM, we can conclude that improving the model mainly
means:

— Reviewing the floor model. The HBM estimations indicate that the thermal conductivity
of some floor layers as well as its area must be significantly increased (see results for meta-
groups MG1 and MG3).

— Reviewing heat convection modelling between the test cell walls and the indoor air. It
seems that values for convective coefficients at the indoor vertical walls have to be
significantly reduced (see results for meta-group MG4).

— Reviewing heat conduction modelling through the test cell envelope (ceiling and south,
east, west and north facades). The HBM estimations (see results for meta-groups MG6,
MG8 and MGQG9) indicate that heat conduction through the envelope is clearly
underestimated by the nominal model.

— Reviewing the solar processor or the heat convection between the south wall and the
outdoor environment (see results for the meta-group MG7).

Meta- | Representative Nominal HBM SRA GNM

Group value

MGI1 Floor surface area 16.28 m’ [19.45, 20.22] 20.05 19.96

MG2 Floor styrodur layer 0.029 W.m' K" [0.0234, 0.0305] 0.026 0.0313
conductivity

MG3 | Floor polystyrene layer 0.040 W.m™.K" | [0.0801, 0.0753] 0.08 0.0968
conductivity

MG4 Indoor vertical walls 9.1 W.m® [3.9059, 3.6326] 3.56 1.666
convective coefficient

MG5 | Floor-indoor air convective 5.88 W.m” [4.6327 , 4.4079] 4.49 4.68
coefficient

MG6 | South wall area 7.25m’ [10.58, 16.34] 14.01 15.87

MG7 | South wall solar 0.30 [1.0137, 0.6581] 0.822 1.357
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absorptivity (outdoor side)

MGS8 | Ceiling glass wool layer 0.042 W.m".K" | [0.0623, 0.0674] 0.066 0.1015
conductivity

MG9 | North wall area 70m’ [12.06, 12.48] 12.53 10.75

Table 3.17. Results from optimisation. HBM = Heuristic Bounding Method; SRA = Search Random
Algorithm; GNM = Gauss-Newton Method.

In figure 3.22, we have represented model output uncertainty bands corresponding to the HBM
solution as well as measurements uncertainty intervals (+0.5°C). A good enough overlapping is
observed between simulations and measurements uncertainty bands.

Concerning diagnosis, results from the SRA and the GNM methods lead to identical conclusions
than HBM even thought GNM propose a slightly different solution. Both RSA and GNM solutions
lead to simulations showing residuals with zero mean and 0.39°C standard deviation value.
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3.6. CONCLUSION

The methodology as well as the methods described in chapter 2 has been used here for empirical
validation of the ETNA test cell model created by CLIM2000. Main conclusions from this validation
exercise are:

= The data quality. The spectral analysis of the available data show that most of the
information contained in the experiment concerns the low-frequency behaviour (daily) of
the test cell. High dynamics parts (hourly) of the test cell model cannot be checked from
this experiment.

* The nominal model performances. It has been created using the ETNA test cell
specifications supplied in [31]. Usual modelling hypothesis have been adopted. Residuals
analysis show than the nominal model is able to reproduce neither the static nor the
dynamic behaviour of the test cell. Main disagreements between measurements and
simulations are observed at the low-frequency range.

= The parts of the model that could be tested on the available data. Sensitivity analysis
indicates that model validation possibilities on the available data are quite limited. At
most, modelling of the following parts and phenomena could be tested:

— Heat conduction through the floor.
—  Heat convection between vertical walls and the indoor air.

— Heat conduction through the south fagade without making distinction between the
wall and the window.

— Heat conduction through the west, east, north and ceiling test cell envelope.

—  Part of the solar processor.

= Preliminary diagnosis based on PCA. Principal components analysis provides some
useful information for diagnosis. It indicates that model performances improvement likely
involves modifications of the heat conduction modelling through the test cell envelope as
well as of the representation of the heat convection at the walls - indoor air interfaces.

= Diagnosis from optimisation. Comparisons between nominal and estimated values for
model parameters point out heat conduction through the test cell envelope as being the
main problem in the model. Thermal conductivities values and/or wall surfaces have to
bee significantly increased to improve the model response. Such parameters displacements
could be explained by nominal test cell material properties not fully matching the final as-
constructed conditions of the test cell. They could also be explained by un-modelled
thermal bridges if nominal values for material properties supplied in [31] are right. In
addition, it seems that indoor convective coefficient values must to be reviewed.

This example of application, show how model parameters space analysis is a useful and powerful
tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison
with residual analysis techniques.






SUMMARY AND CONCLUSIONS

The methodology for empirical model validation developed in the framework of the IEA Task 22
involves two main steps: checking model validity and diagnosis.

First step aims to test the model performances by identification of significant disagreements
between measurements and simulations. It rest both on residuals analysis techniques and on
comparisons between model outputs uncertainty bands and measurements uncertainty intervals. The
pertinence of the mathematical tools underlying this step is today well recognised.

Second step intends to explain the differences observed between model simulations and
measurements. This is a difficult task that has been overlooked (or performed in a very subjective
way) for a long time. First attempts to establish methods for rigorous model diagnosis are relatively
new. They mainly concerns the so-called “residuals analysis techniques (RAT)” whose aim is to
identify model input variables strongly correlated with residuals. Results from RAT could help the
modellers to sort the model inputs and to target those responsible of the major part of the error over a
given frequency area. This approach to diagnosis has been largely used in the 90’s. However, it
presents two severe limitations: firstly, it cannot be applied to non-linear models; secondly, going up
from inputs-residuals correlations to modelling hypothesis is frequently impossible. A new approach
for models diagnosis has been thus proposed here. It rests on the analysis of the model parameters
space. The main objective is to identify the changes in parameters values that are required for a
significant model behaviour improvement. Diagnosis is then provided by comparison of such results
with the knowledge we have about both the actual system and the model itself.

The IEA diagnostic approach involves three main parts:

* Sensitivity analysis. The principal aim of this part if to identify the parts of the model as well as
physical phenomena that can be really tested on the available data. Sensitivity calculations,
correlation analysis and principal components analysis are the main tools proposed to reach
this objective. Some preliminary elements for diagnosis are already supplied by principal
components analysis at this stage.

= Optimisation. Parameters estimation techniques are the main mathematical tool we are
proposing to guide model diagnosis. Free model parameters values allowing significant
residuals reduction are here identified by fitting the model on the available data. Diagnosis
mainly involves comparisons between estimated and nominal model parameters values. Three
different algorithms for optimisation have been proposed and discussed.

= Diagnosis. The possible causes of discrepancies between measurements and simulations are
finally elucidated using;:

— Some knowledge about the model. The main information required concerns the
phenomena considered in the model and the parameters involved in their representation.

— Modelling hypothesis analysis. Foreseeable model parameter values for each one of the
hypothesis in the model, as well as for their negative statement, are desired but difficult to



obtain. Instead, some knowledge about what kind of model parameter displacements are
expected when inadequate modelling hypothesis can be used. For instance, un-modelled
thermal bridges (when significant) will lead to systematic increasing of thermal
conductivity values when fitting the model to the data.

— Parameter changes analysis. It involves comparisons between estimated and nominal
model parameters values. Large differences are expected for parameters involved in
phenomena which are not correctly represented in the model.

The combination of these three elements of judgement should lead to know reasons for the
observed model errors, and to suggest model improvements.

Concerning the mathematical methods underlying the IEA empirical model validation
methodology, some new contributions can be pointed out:

— An efficient computational method has been developed for differential sensitivity analysis
involving large scale systems of differential equations with a large number of parameters.
It is based on both the well known sensitivity-equation method and the theory of balanced
realisations.

— Principal components analysis has been introduce as a simple and useful tool for active
model parameters identification and grouping. In addition, it has been proven that it can
supply some preliminary elements for diagnosis.

— A new algorithm for fitting models on the data has been proposed: the heuristic bounding
method (HBM). It seems to us a promising way for modelling diagnostic purposes. Main
reason is that HBM allows incorporation of data uncertainty and it is conceived for reliable
global solution searching. In addition, HBM computer implementation is quite easy and it
does not require any simulation code modification.

Two main computer tools have been developed within the IEA Task 22 for empirical model
validation purposes: MED and MEDLab. Please, contact the authors for obtaining the corresponding
B-versions and the user manuals.

The IEA Task 22 methodology has been applied for model checking and diagnosis in the
framework of the thermal analysis of the ETNA test cells. Two different modelling-simulation
environments have been used: CLIM2000 and CA-SIS. Such examples of application show how model
parameters space analysis is a useful and powerful tool for empirical validation. In particular,
diagnosis possibilities are largely increased in comparison with residual analysis techniques. In both
cases, comparisons between nominal and estimated parameters values pointed out heat conduction
through the test cell envelope as being the main problem in the models. Thermal conductivities values
and/or wall surfaces areas have to be significantly increased to improve the models response. Such
parameters displacements could be explained by nominal test cell material properties not fully
matching the final as-constructed conditions of the test cell. They could also be explained by un-
modelled thermal bridges if assumed nominal values for material properties are right.

Even though we are convinced that our proposal is a step forward in empirical model validation, it
is not immune to criticism. Main limitations of the proposed methodology are related to the data and
the experiment quality as well as to the diagnosis required expertise. In practice, it is frequently
noticed that the information contained in the available experiments is quite limited for model
validation purposes. Usually only a few parts and phenomena in the model can be really tested on the
available data. Concerning diagnosis, going up from the model parameters displacements to the
modelling hypothesis to be changed requires a real expert knowledge on both the studied system and
the model.
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Abstract

An efficient computational method has been developed for differential sensitivity analysis
involving large systems of differential equations with a large number of parameters. It is based on
both the sensitivity-equation method and the theory of balanced realisations. The sensitivity-
equation method is first used to generate the whole set of sensitivity models (one state-variable
model per parameter). A sensitivity model, as well as its corresponding balanced realisation, is
characterised by three matrices of the same dimension than those in the nominal model: the state
matrix, the command matrix and the output matrix. However, such matrices remain unchanged
regardless of the parameter under consideration. Consequently, a single calculation suffices to
obtain the balanced realisation of all the sensitivity models. Such representation allows ranking the
state variables according to their degree of controllability/observability. A low-dimension
balanced realisation is then obtained by only keeping the more controllable/observable state
variables. The sensitivity problem solution is finally obtained by time integration of the low-
dimension sensitivity models instead of the corresponding full-dimension ones.

NOMENCLATURE
A Matrix [ n x n | of heat exchanges among the nodes of the discretisation mesh
B Command matrix [nxn ]
C Matrix [ n x n ] of heat capacities
c(M) Heat capacity, J/m’K
F State matrix [nx 7 |
k(M) Thermal conductivity, W/mK
0] Output matrix [ g x # |
P Transformation matrix [# x x|
r(M,M'") Distribution of radiative coefficients of exchange
T(M,t) Temperature field at point M and time ¢, K
T() Vector [ nx1 ] of temperatures at the nodes of the mesh of discretisation, K
U(@?) Vector [ p x1 ] of forcing functions or input variables
v(M) Fluid velocity field, m/s




w. Gramian of controllability, matrix [n x n ]
w Gramian of observability, matrix [nx n |
X() Vector [ nx1] of state variables
Y(¢) Vector [ p x1] of output variables
y,(t) Output variable
A, i" Hankel singular value
0 Vector [ m x1] of model parameters (éo , nominal values)
0, k" model parameter
0,(M,1) Sensitivity of 7(M,t) to the parameter 0,
0,0 Sensitivity of the vector 7'(¢) to the parameter 0,
o(M,t) Heat sources (W/m’ for M €Q; W/m® for M e A2)
o, (1) Sensitivity of y,(¢) to the parameter 0,
o, () Sensitivity of the vector Y(¢) to the parameter 0,
Q System domain Q=Q_ U X2
129) System frontier (A2 = A2, UAR,)
129} Part of the frontier with Dirichlet boundary conditions
w(M,t) Solicitations field (W/m® for M e Q,; W/m?® for M € X2)
Special symbols
L Heat operator for coupled thermal transfers
B Boundary conditions operator
Superscripts
- Approximation
! Transposed matrix
Time derivative

1. INTRODUCTION

Sensitivity analysis studies the effect of parameter variations on the behaviour of a dynamic system. It
is recognised as an important step for getting an enhanced understanding of the systems performance,
and for providing guidance for optimal design purposes. Therefore it proved its effectiveness in
uncertainty propagation studies, as well as in models validation and models calibration. A rather
complete state of the art on the techniques of sensitivity analysis is brought in [1]. One can distinguish
two main families of sensitivity methods: those that follow a deterministic approach, on the one hand,
and those that adopt a statistical procedure, of another. The well-known techniques of differential
sensitivity analysis are in the first group. Its characteristic is to examine the first-order derivatives of
the model response with respect to its parameters. According to the complexity of the problem, the
derivatives either will be calculated in an approximate way (parameter-perturbation methods) or exact.
One is interested here in the exact methods, among which one distinguishes the so called direct and
adjoint methods.

The direct method (sensitivity-equation method) involves differentiation of the model
equations with respect to the parameters. This leads to a model of sensitivity per studied parameter.
The resolution of the sensitivity problem then involves the integration of as many systems of
differential equations than there are parameters. One sensitivity model integration leads to the time
evolution of all dependent variables of the model with respect to a single parameter.



The theoretical bases of the adjoint method are established in [2], where a general formulation,
applicable to all kinds of models (linear, non-linear, dynamic, static), is brought. This method starts by
defining the model response as a functional of the dependent variables of the model. A system of
adjoint equations (adjoint model) is then built from a differentiated form of the original model. In
contrast to the direct model, a single integration of the adjoint model leads to the sensitivity of the
model response to all the parameters. However, the adjoint model depends on the model response and
it must be solved anew for each model dependent variable.

In practice, for about de same amount of computation, the adjoint method gives de sensitivity
of a functional of the model variables to all the parameters, while the direct method gives the
sensitivity of all variables to a single parameter. The direct method is computationally efficient only
when effects of few parameters on a large number of variables are being evaluated, while the adjoint
method adapts better to the contrary case. These two techniques become ineffective when the analysis
of sensitivity involves both a large number of dependent variables and a great number of parameters,
the problem being all the more significant as the dimension of the original model is large. Common
thermal modelling problems often involve large systems of differential equation with a large number
of uncertain parameters. A numerical approach that makes it possible to extend the application of the
sensitivity-equation method to such kind of problems is here proposed.

The second section presents the mathematical formulation of the problem of sensitivity. The
most typical parameters are initial conditions, time-invariant coefficients, time-variant coefficients,
forcing functions, sampling intervals, round-off errors, etc. In this paper, the attention is focused on
time-invariant coefficients. Furthermore, one addresses to linear thermal systems. Despite such a
limitation, however, there still exists a vast class of problems of practical importance that can be
studied assuming linearity. The third section describes the fundamentals of the computational method
that is proposed for solving large-scale sensitivity problems. It rests on the theory of balanced
realisation, which makes it possible to strongly reduce the number of differential equations in a model
without introducing a significant loss of precision. It must be noticed that the number of sensitivity
models to integrate remains equal to the number of parameters concerned with the analysis. However,
their dimension is strongly reduced and the computing time hence decreases significantly. The method
is all the more effective as the dimension of the original model and the number of studied parameters
is large. The last section includes an example of application that shows the effectiveness of the
suggested method.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

Let Q be a geometrically bounded thermal system in R, and let 6Q be its frontier. It is assumed that
the system domain € can be split-up in a finite number of solid or/and fluid subdomains with
invariant geometry. Each one of the subdomains is formed by a continuous and monophasic medium
whose thermophysical properties (thermal conductivity, density, specific heat, transfer coefficients,
etc.) are space continuous functions. Furthermore, such properties are assumed to be time invariant
and independent of the temperature. Incompressible and low viscosity fluids are supposed. In addition,
the velocity field is assumed to be time invariant and known.

Energy transfer in  can take place by the following mechanisms: heat conduction,
convection and radiation. It is assumed that a linear model linking-up radiative flux to the thermal
field can be used for thermal radiation exchanges representation.

2.1. The nominal model

In the framework of the previous hypothesis, the only knowledge of the evolution of the
temperature field is enough to define the thermodynamic state of the system in any point and at any
moment. One presents below the most general possible equations within the limits of the allowed
assumptions. All the other forms of the equations of evolution are particular cases. The energy
conservation equation is then written in the operational form:



OT(M, 1)

MeQ, L[T(M,0)]+¥Y(M,1)=c(M) o (1)

M €oQ B[T(M, 1))+ W(M,1) =0

L is the heat operator for coupled thermal transfers. It is given by [3]:

L[T(M.1)] = %[k(M)%T(M, z)] —i(M)VT(M,t)+ j H(M, M)T(M' ,t)dM' )

Q

where one can recognise the heat transferred by conduction (first term), by mass transfer (second term)
and by thermal radiation (last term). k(M) is thermal conductivity at the point M. u(M) represents

the product of the heat capacity c(M) by the speed vector v(M). r(M,M') is a distribution of

radiative coefficients of exchange. It takes into account the geometric configuration factors between
the differential elements dM and dM', their optical properties and those of the optical way which
separates them [3, 4].

B is the operator of the boundary conditions. At points M € XY, « &Y verifying Dirichlet

boundary conditions, B is the identity operator. Otherwise (M € X2, — &2), B is given by [3]:

B[T(M.t)] = —[k(M)%T(M, t)]ﬁ(M) + J. H(M, M YT(M' ,t)dM 3)

Q

Y(M,t) represents the so-called solicitations field. For any point M €€ inside the system,
it generally includes two terms:

W(M,t)=c(M,t)+ jr(M, M)YT(M',t)dM" )

The first one represents the sources or sinks of heat, and the second one is the radiative flux coming
from the system environment Q'. For any point M € X2,, W(M,¢) is given by:

Y(M,t)=0c(M,t) +Ir(M,M' YT(M ,t)dM' + k([V[)%T(M,t) —u(M)T(M,t)| n(M) )

o

where one recognises equation (4) increased of a heat conduction flux and a term due to the transport
of mass. Such a term is zero everywhere except at the fluid inlets and outlets. Finally, at any point
M eX),, W(M,t) is equal to the prescribed temperature.

In practice, the objective for modelling could be focus on some intensive or extensive
quantities at some points in Q instead of the complete temperature field. Such quantities are called
observation variables or outputs. The time evolution of the observation variable y,(#) can be written

as:
yi(0) = J(T(M,0))+G,(y(M,1)) (6)
where J, and G, are linear and real functionals.

2.2. The sensitivity models

One notes 0 = {6, 0, - Gm} the vector of the model parameters. Among the parameters
one finds those that define the system geometry, those that determine its thermal or optical properties,



the velocity field, etc. The sensitivity of 7(M,t) and y,(¢) to the parameter 0, are respectively
defined by:

OT(M,t) and o, (1)= @)

O (M=
A(.) 20, 0,

(7

They are first-order estimations of the effect of a weak variation of the parameter 6, on 7(M,¢) and
»,(t), the other parameters being maintained constant. The equation that describes the time evolution
of ®,(M,t) is obtained by simple differentiation of the equations (1) to (5). One get:

00, (M, 1)

MeQ, L[O,(M,n)]+¥,(M,1)=c(M) P ®

M €0Q B[O®, (M, )]+ ¥, (M,1)=0
with:

dy(M,1)  de(M) OT(M,1)
00, 00, ot

)
M edQ ‘Pk(M,t)sz[T(M’t)]JFM

MeQ, Y,(M,)=L[T(M1)]+

k

According to (2) and (3), L, and B, are given by:

ol k(M) - (M) - Or(M, M)
L,[T(M,1)] = V[—aek VT(M, t)} e VT(M,t)+ j ~% T(M ,t)dM'
? (10)
B,[T(M,1)]= _{a/;% VT(M, t)}ﬁ(m + IM T(M' ,£)dM'

) 00,
It must be noticed that the different terms in equations (9) and (10) are evaluated at the point éo of the
space of the parameters (vector of the nominal values). Therefore T(M,t) represents the solution of
(1) for 6=6, .

In the same way, the equation describing the time evolution of o, (¢) is obtained by simple
differentiation of (6):

Gl,k(t)=J1(®k(M’t))+nl,k(M’t) (11)
with:

_a), 0G,(y(M, 1))
(1) = g HTOM.0) + =0 (12)

2.3. The finite dimension formulation

Since no general theory is currently available for the analytic solution of partial differential
equations, approximate methods and numerical solutions are the only practical alternative that scientist
and engineers usually resort to solve this type of equations. Spatial discretisation of equations (1) or
(8) leads to a system of ordinary differential equations (state-space model) of the form:



CZ(t)= AZ(t) + v, (2)

(13)
Y(0) = JZ(1) + (1)

where C is the matrix [n xn] of heat capacities at the nodes of the discretisation mesh, A4 is the
matrix [#n xn] of heat exchanges between nodes (numerical approach of L) and J is a matrix of

dimension [ ¢ x n]. These three matrices (calculated for 0= 60) remain unchanged regardless of the

parameter under consideration. Consequently, a single calculation suffices to obtain the nominal
model and all the sensitivity models.
In the nominal model Z(¢)=T(t) and Y(¢)=7Y(¢), where T(¢) is the vector [nx1] of

temperatures at the nodes of the discretisation mesh and Y(¢) is the vector [¢ x 1] of the output
variables. y(¢) [nx1]and 7,(¢) [q x1] represent the effect of the solicitations on the mesh nodes
and on the output variables respectively. They usually take the following form:

v, ()= EU() n,(1) = GU() (14)

where U(t) [px1] is the forcing functions or inputs vector. E and G are matrices of dimension
[nx p]land[g x p]respectively.
In the £ sensitivity model (k=1,---,m ), Z(t) and Y(¢) are given by:

B _dT(1) _ _dx(@

Z(l)—®k(f)——dek Y()=0,(1) o, (15)

As for y () and n,(?), they are given by
(24 7+ O Ny [ 2€ ) 4T

wk(t)—(aek]T(t)+(aeJU(t) (aekj " (16)

and
oJ oG
m(ﬂ—(a—ek}T(t)Jr(a—eij(f) (17)

where all the derivatives are evaluated for 6 = 60 .

3. NOMINAL AND SENSITIVITY MODELS REDUCTION

The resolution of the problem of sensitivity involves the time integration of 1+ m state-variable (Eq.
13), the nominal model and the sensitivity models, which include as many ordinary differential
equations than there are capacitive nodes in the discretisation mesh. Consequently, their size increases
with the complexity and the dimension of the system geometry, as well as with the accuracy we are
looking for. Sensitivity analysis could then be computationally intensive and limited by computer
performance. In order to handle such kind of problems, an approximation based on model size
reduction techniques is here proposed.

The objective of model size reduction techniques is to replace the state model (13) by a low-
dimension one without introducing a significant loss of precision. A satisfactory representation of the
full-dimension model behaviour is then get with a limited number of calculations. Model reduction has
been the subject of many investigations and a great number of reduction techniques have been
proposed in the past. A rather complete state of the art is brought in [5]. The most efficient methods
are the so-called truncation methods. They consist in representing the state variables of the problem as
a linear combination of the eigenfunctions of a particular basis (e.g. modal basis [6, 7, 8], balanced
realisation [9] and singular basis [10, 11]). If the projection basis allows highlighting a small number



of significant directions, the solution can then be approached using a reduced number of
eigenelements. A reduced 7 -order model is get by the following procedure:

— Separation of the pseudo-steady and dynamic terms of the state variables: Z(t)=Z (1) +Z,(t). The

pseudo-steady term represents the state variables behaviour when the thermal capacity of the
system is assumed to be zero. It follows that: Z (¢) = —A"'y (¢). So, the dynamic term and the

outputs verify:

Z,(6)=C"AZ,(0)+ 4™y (1)

1 (19)
Y(t) = sz([) + (m(t) -JA4 \Vk(t))

Using the formulation (19) instead of equations (13) presents some clear advantages for model
reduction purposes. Practice indicates that to yield accurate results for small values of 7 it is often
necessary starting reduction from (19). Otherwise, the convergence rate with » will be much lower

(cf. [5]).

— Calculation of a pertinent equivalent full-order model. Let P be a non-singular matrix of
dimension [#n x n] containing, column wise placed, the vectors p,, p,, -+, p, of a given

basis. Let us consider the transformation Z,(z) = PX(¢), where X(¢) is the vector [nx1] of the

decomposition coefficients of Z,(¢) on the chosen basis. From equation (13), it follows the

equivalent state model:

X(1)=FX(1)+ By (1)

1 (20)
Y(0)=0X () +(n,()—JA v, (1))

with F'= P7'C™' AP (state matrix), B= P~' A" (command matrix) and O = JP (output matrix).

— Full-order model truncation. Assuming vectors p,, p,, ---, p, have been ordered in a

convenient way, a reduced-order model of dimension 7 is then obtained as

X(t)= FX(t) + By, (1)

~ (21)

Y(1) = 0X(1) + (,(0) = JA ™'y, (1))

where the state matrix F [rxr] is formed by the » first columns and rows of F, the command
matrix B [r x n] includes the r first rows of B, and the output matrix 0 [g xr]is formed by the
r first columns of O .
It should be noticed that obtaining the whole set of reduced models is not more expensive in time
than obtaining only one them, the matrices 7, B and 0 being the same ones for all the models of
the set.

Practice indicated that the selection of the transformation matrix P has a significant influence on the
quality of the resulting low-dimension model, the balanced realisation [9] being one of the best
choices. It is based on the central notions of controllability and observability. Assuming eigenvalues
of matrix C™' 4 to be strictly in the left half-plane, then we can define the controllability gramian and
the observability gramian of (19) as:



J‘e(C"A)f(Al)(Al)Te(C"A)Ttdt and W = J‘e(C"A)TfJTJe(C"A)td[
0

0

w

c

respectively. By considering the corresponding matrix differential equations it is easily verified that
W and W, satisfy the following Lyapunov equations [12]:

(CT AW+ (C™ A +(4")(A) =0 o
C'H'W +w (C'AH+J"T=0
Both W, and W, are definite positive matrices of dimension [z x n]. It is easily demonstrated that
they depend on the state-space co-ordinates. If it is changed to Z,(¢) = PX(¢) for some non-singular
P, the controllability and observability gramians become:

w

c(x)

=P'w.(P") and W

o(x) = PTW;P (23)

A balanced realisation is obtained for a matrix P which verifies the following equation:

Wiy =Wy =2 (24)
where X = a’iag[/l1 A, o ln] is a diagonal matrix containing the Hankel singular values, which

are fundamental invariants of the system. Such transformation may be obtained in different ways [9,
13, 14]. The method proposed by Laub [14] is one of the most efficient ones. The matrix W, is first

decomposed as (Cholesky factorisation method):
W.=RR" ( R =low triangular matrix) (25)

The product R"W, R is then a definite positive matrix. It can be transformed in a diagonal matrix by
solving the following symmetric eigenvalues problem:

R'WR=UL’U" with UU" =1 (26)
The matrix P we are looking for is given by (see [14] for demonstrations):
P=RUL™" 27

The components of X(¢) (the state vector of the balanced realisation) are arranged so as the
elements of the matrix X appear in the decreasing order 4, > A, > ---> A, >0. The balanced

realisation is then truncated keeping the more controllable and observable state variables; those
associated to the greatest » Hankel singular values. The controllability/observability gramian X
brings a way for measuring both the sensitivity of the state variables to the forcing signals and the
sensitivity of the model outputs to the state variables. Hence, elimination of the state variables
showing a weak degree of controllability/observability should be a good way for model size reduction.

It has been proved in [15] that the L_-norm of the error introduced by truncation of the

balanced realisation can be bounded by « twice the sum of the tail » of the Hankel singular values
spectrum:



||G(ja))-Gr(ja))||Lm < 2(A + A+ +A,) (28)

r+l r+2

where G(jw) and G.(jw) are, respectively, the transfer functions matrix of the full-order and the r -

order models. This error bound gives strong theoretical support to the observation that truncated
balanced realisations so as 4,,, >> A, give very good results in practice.

4. STEP BY STEP SOLVING PROCEDURE

The proposed procedure for solving large-scale sensitivity problems is briefly summarised here.
Step 1. Spatial discretisation of equation (1): calculate the matrices C, 4 and J.

Step 2. Calculation of the balanced realisation:
— Calculate the gramians W, and W, by solving the Lyapunov equations (22).

— Calculate of the transformation matrix P using the procedure described by equations (25)
to (27).
— Calculate of the matrices F =P 'C'AP, B=P"'4" and O=JP.

Step 3. Truncation of the balanced realisation:
— Choose the reduction order » soas A,,, >> 1, .

— Calculate the low-dimension matrices F , Band O.

Step 4. Time integration of the low-dimension nominal model:

X()= FX(0)+ By, (1)
Y(6)=0X(1)+(n,(t)— JA 'y, (1))

with y(¢)= EU(¢) and n,(¢#) = GU(¢) . Estimate 7'(¢) and its time derivative:
T(t)=PX(t)- Ay, (1)

where P is formed by the first » columns of P.

Step 5. Time integration of the low-dimension sensitivity models (k=1,---,m):

X(6) = EX(t)+ By, (1)
Y (1) = OX() + (n, () = JA 'y (1))

where y,(¢) and 7, (¢) are given by equations (16) and (17) respectively.

5. EXAMPLE

Thermal building analysis usually leads to large-scale models including a large number of parameters.
Hence, the sensitivity of the thermal behaviour of a simple building to the thermophisical and optical
properties of its components, as well as to the parameters defining its geometry, has been chosen to
illustrate the advantages of the proposed computational method.

ETNA is an EDF’s experimental building that has been specifically designed for empirical
model validation purposes (see Fig. 1). It is formed by two identical and symmetrical testing rooms
(41.3 m3). Only one of them is here considered (test cell in the following). Its southern facade is in
contact with the outdoor environment, while the other ones (west, north, east, floor and ceiling) are



surrounded with thermal guards at controlled ambient temperature. One can refer to [16] for a detailed
description of the test cell (geometry, walls compositions, materials properties, etc.).

A test cell model of the form (13) was generated using the building simulation environment
M2m [17]. The main physical phenomena considered are: heat conduction in walls, heat convective
exchanges at the wall-air interfaces, long wave radiative exchanges among building surfaces, short-
wave radiative exchanges with the environment (solar radiation effects), and air infiltration. The model
is formed by 421 linear ordinary differential equations. It includes 8 inputs variables (the outdoor air
temperature, the air temperature in the guards zones, the solar flux density on the south facade, and the
heating power which is supplied to the indoor air by means of a 100% convective heater) and 421
output variables (the temperatures at the nodes of the discretisation grid). The total number of model
parameters is 207, among which one finds the surface of the different walls and windows, the
thickness of the layers of the walls, the thermophysical properties of the materials (conductivity and
heat capacity), the optical properties of the different surfaces, the walls-air heat convective
coefficients, etc.

The hourly data from the experiment carried out from the 25/02/95 to 19/03/95 (23 days) are
here used for simulation purposes. Figure 2 includes the time evolution of the outdoor air temperature,
as well as the air temperature in the thermal guards (controlled at 10°C). Figure 3 represents the solar
flux density on the south facade. The heating power was provided by an electric source whose
operation was controlled by a pseudo-random binary sequence (see Fig. 4). Furthermore, Figure 5
shows the time evolution of the test cell indoor air temperature (simulations from the nominal model).

Results achieved for one of the model outputs are here presented. The reduced sensitivity of
the indoor air temperature to the variations of the parameter 6, is defined by:

o5y =—2__
(1/6,)70,

The units are identical to those of the output variable (°C). When the goal of the analysis is to establish
a hierarchy among the parameters of the model according to their influence on the output, the
comparisons in term of reduced sensitivity are more interesting than those in terms of sensitivity. One

notes &, (¢) the reduced sensitivity estimated starting from a 6-order reduced model.

The average values and the standard deviations of the reduced sensitivities make it possible to
analyse the influence of the parameter on the static and dynamic behaviour of the cell test respectively.

One notes m, and m, the average values of o,(t) and &,(t), respectively. Similarly, s, and 3,

represent the standard deviations of o (¢) and &, (¢). The relative errors:

m, —m; Sp = Sk

and
m Sk

can be used as a first measure of the quality of the proposed approach.

Figure 6 represents the relative errors on the average values versus the corresponding average
values m, (k=1,---,207), and Figure 7 includes the relative errors on the standard deviations versus
the standard deviations s, (k=1,---,207). In both cases, the most significant errors are associated to
the least influential parameters. The maximum relative error on the average is lower than 0.06%; it
corresponds to a parameter with a weak influence on the static behaviour of the cell test. Similarly, the
maximum relative error on the standard deviation (1.2%) is associated to a parameter showing a
negligible effect on the dynamic behaviour.

The results in figures 8 and 9 are representative of the most unfavourable conditions (worst
results). That is, they are associated to a not very significant parameter (m, =0.01°C and

s, =0.035°C). The relative errors on the average and on the standard deviation are —0.0147% and

1.16% respectively. Figure 8 represents the time evolution of the reduced sensitivity, while Figure 9
shows the time evolution of the differences observed between the reduced sensitivity calculated



starting from the full-order model and that which is obtained with the 6-order balanced realisation. It
can be seen that errors due to the model size reduction are less than 2 x107°°C.

Figures 10 and 11 are representative of the best results achieved. The relative errors on the
average and the standard deviation are —0.001% and 0.0001% respectively. The error due to the
replacement of the complete model by the reduced model is lower than #3x107°°C .

Results of intermediate quality are provided in figures 12 and 13. The relative errors on the
average and the standard deviation are 0.013% and 0.41% respectively. The differences between the
simulations coming from the full-order model and those from the 6-order one are lower than
+3x107*°C.

Whatever may be the parameter, the errors introduced by the truncation of the balanced
realisation remain negligible. The problem which consists in integrating 207 state models including
each one 421 of ordinary differential equations (ode) can then be replaced by the integration of 207
low-dimension models (6 ode by model) without introducing a significant loss of precision. This
implies a strong reduction (98% approximately) of the calculating time required.

6. CONCLUSIONS AND PERSPECTIVES

An efficient numerical method for solving large-scale differential sensitivity problems has been
proposed. The sensitivity-equation method is first applied to generate the whole set of sensitivity
models (one state-variable model per parameter). A sensitivity model, as well as its balanced
realisation, is characterised by three matrices of the same dimension than those in the original model:
the state matrix, the command matrix and the output matrix. However, these matrices remain
unchanged regardless of the parameter under consideration. Consequently, a single calculation suffices
to obtain the balanced realisation of all the sensitivity models. Such representation allows ranking the
state variable according to their degree of controllability and observability. A low-dimension balanced
realisation is then obtained by keeping the more controllable and observable state variables. The
sensitivity problem is finally solved by time integration of as many low-dimension sensitivity models
than there are parameters instead of the corresponding full-order models.

The interest of the method increases significantly with the dimension of the nominal model
and with the number of parameters. An example has been used to illustrate its effectiveness. The
nominal model includes 421 ordinary differential equations and 207 physical parameters. So, the
sensitivity problem involves 87147 differential equations (207 systems of 421 ordinary differential
equations). It is however shown that a 6-order balanced realisation (207 systems of 6 ode) provides
very high quality results. This implies a reduction of the calculating time from approximately 98%.

The paper addresses to linear models. However, the method should be extended to non-linear
systems for sensitivity models remain linear and they share the same state, command and observation
matrices. In contrast to the linear case, the coefficients of such matrices vary with time and special
reduction techniques, as those proposed in [18], will then be required.
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Validation of Two French Building

Energy Programs

Part 2. Parameter Estimation
Method Applied to Empirical Validation

Gilles Guyon, Ph.D.

ABSTRACT

Two French building energy programswere devel oped by
the French utility company. Thefir st oneisintendedto produce
economic studies and be used as a research tool. The second
oneismore dedicated to engineering offices asa tool adapted
to their constraints in thermal studies. To give confidence to
the end-users and to ensure the quality of the software
programsresults, avalidation procedure hasbeenin placefor
many years. In Part 1, we presented the use of analytical tests
with the first software. In this part, we focus on the empirical
validationwork proposed by the Frenchteamintheframework
of a project led by an international organization dealing with
energy savings. A new approximation based on parameter esti-
mation methods has been proposed for purposes of modeling
error diagnosis. It has been tested in providing a diagnosisto
discrepancies between simulations and measurements in an
actual building and has proved to be very efficient.

INTRODUCTION

A building energy software program (EDF/DER 1998)
was developed by the French utility company and has been
operational since June 1989. It allowsthe behavior of anentire
building to be simulated. Its main objective is to produce
economic studies, pertaining to energy balances over long
periods, as well as more detailed physical behavior studies
including nonlinear problemsand varied dynamics. It canalso
be used for eval uating the effi ciency of anew component, such
as a heating system, ventilation system, or a new insulator,
glazing, etc., because it is very easy to implement a new
elementary model into it, reproducing numerically the physi-
cal behavior of the new component to be evaluated. Thiskind

Elena Palomo, Ph.D.

of software is one of the best means in terms of cost and time
to evaluate a new building component.

The second software program (EDF/DER 1997), also
developed by the French utility company, is dedicated to
HVAC system comparisons. It is based on abuilding simula-
tion program widely used in the USA (Klein and Beckman
1996), and a specific model library has been developed to
simulate HVAC systemsand all ow easy comparisons between
them. This software seemsto be an answer to the problems of
engineering offices, enabling analysis and accurate predic-
tions of energy consumption in buildings within a relatively
short time scale. This software also offers a three-step
approach corresponding to the different levels of knowledge
in a project—sketch, basic, and advanced.

It is necessary to show the end-users that these software
programs are able to give good predictions. To do this, we
have tried to develop a specific validation procedure. The
aim of this validation work is to give confidence in the
results produced by the code. In addition to that, it is obvious
that, without any validation work, the simulated results will
not be taken into account with great confidence by decision
makers in a discussion more political than technical. This
work was started at the beginning of the 1990s. In the Part 1
of this paper, we described the validation procedure used for
the French software programs, with a conceptual idea of the
validation and a presentation of the strengths and weaknesses
of each stage in this procedure. The reader is invited to look
at this part in order to see in which step of the validation
procedure the empirical validation is included. We also
presented the use of analytical verification tests with the first
software and a comparison between analytical solution and
simulated results.

Gilles Guyon is a research engineer in the Research and Development Division, Electricité de France, Moret/Loing;|Enarizaomo
is a researcher at I'Ecole Nationale des Ponts et Chaussées, Marne-la-Vallée, France.

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 1999, V. 105, Pt. 2. Not to be reprinted in whole or in
part without written permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1791 Tullie Circle, NE, Atlanta, GA 30329.
Opinions, findings, conclusions, or recommendations expressed in this paper are those of the author(s) and do not necessarily reflect the views of ASHRAE. Written
questions and comments regarding this paper should be received at ASHRAE no later than July 7, 1999.



Part 2 of this paper dealswith empirical model validation
matters. Empirical validation should, in principle, compare a
true model derived from experiments with a computerized
model. It isnot, asisanaytical validation, limited to isolated
processes in simple constructions, but deals with real-world
complexity comparable to situations encountered when the
simulation codeisused indesign studies. Empirical validation
is, therefore, the most widely used technique for validating
transient simulation programs. Beyond any technical consid-
eration, it providesaguarantee of user confidence and enables
the modeler to improve hisher understanding of the system
being modeled and to improve the model itself. The aim of
empirical validationistwofold: First, one needsto detect if the
model isableto describe correctly the observed redlity, that is,
to check whether the model satisfies some a priori validation
criteria (checking model validity); and, second, the causes of
the observed differences between measured and predicted
values must be identified in order to improve the model if
required (diagnosis). In this paper, attention is focused on
methods of diagnosing modeling errors. It includes a brief
presentation of the state of the art, a description of the meth-
odology we are proposing, and an example of application
based on the experiment carried out in the test cells owned by
the French utility company that has devel oped both software
programs (Girault and Delille 1995).

STATE OF THE ART

Two significant techniques using linear analysis tools
have been proposed in the past for diagnosis of modeling
errorsin building thermal analysis.

The first one consists of a direct comparison of the

system’s global physical parameters (first time constant an

The technique proposed in Palomo et al. (1991) and
Jensen (1993) is based on nonparametric spectral analysis of
residuals. The contribution of each input to the residuals is
analyzed by means of the squared partial coherence func-
tions. The squared partial coherence for itheinput is a
normalized measure at frequenoyf the linear cross-corre-
lation existing between residuals and inpatfter allowance
is made for the effect of the other input variables. It takes
values from 0 to 1. Zero values mean that no correlation
exists between thith input and the residuals, unity values
mean that residuals could be completely recovered from this
input, and values between 0 and 1 correspond to situations
where residuals can be partially predicted fromithénput.
Such information helps modelers to sort the inputs and to
target the one responsible for the major part of the error over
a given frequency area. This is the method reviewed and
accepted in Ramdani (1994) and Ramdani et al. (1997),
where spectra and partial coherence functions are simulta-
neously used to quantify the contribution of each model input
to the residuals variance.

The technigue proposed in Martin and Watson (1993) is
slightly different, although it also deals with residuals analy-
sis. A dynamical linear and stationary multiple inputs, single
output (MISO) model is identified on the residuals/input
data. Such a model is intended to predict the residuals time
evolution, and it is then used to estimate the contribution of
each model input to the total variance of the residuals. This
error desegregation technique, dealing with the total residu-
als variance, does not allow separation of time scales
(frequency ranges), and it does not provide as much informa-
tion as the previous ones.

Residuals analysis techniques have been widely used in

static gains) estimated from measurements with the on
calculated by means of the analyzed model. To obtain sucﬁ?
information from experimental data, identification tech-. €
niques can be applied. A dynamic linear model, in state spa&%h
form (Jensen 1993) or in a black-box form (Candau and Pi
1993), is identified on data and then reduced to its charact

e 1990s, especially in the framework of a British-French
llaboration between the French utility company that has
veloped the two software programs and a well-know Brit-
research center in the field of buildings. Although they
pear capable of diagnosing some of the modeling errors
lfabary and Ramdani 1995), the authors believe them to

istic time constant and its static gains. To get such informas—mcfer some limitations. The most important ones are:

tion from the knowledge model, the use of spectrah,
decomposition techniques has been proposed in Candau and
Piar (1993) and a different technique based on simulations in
Jensen (1993).

The second technique deals with residuals (differencezs'
observed between measurements and simulations) analysis
and was first proposed in Palomo et al. (1991). Because model
simulation aims at reproducing the effect of the external influ-
ences that drive the experiment, one expects a part of the resid-
uals to be sensitive to these inputs. Hence, the proposed
technique seeks to quantify the contribution of each system
input to the residuals. Such information helps modelers to sort

They are based on linear analysis tool, and, consequently,
they cannot be applied to diagnosis of errors in nonlinear
models.

They are mainly based on analysis of the causal relation-
ships between residuals and model inputs (black-box
approximation). They give information about input-output
relationships in the models but not about their structures.
This is the reason why no clear indications of how to
improve models are given often by means of residuals
analysis techniques.

These limitations lead us to propose another kind of

the inputs and to target the one responsible for the major papproximation to the model diagnosis problem, which is
of the error. Efforts to improve the model should then focus omainly based on parameter estimation techniques and is
the way the model takes into account this particular input. described and discussed in the next section.
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MODELING ERRORS DIAGNOSIS VIA
MODEL PARAMETERS SPACE ANALYSIS

The parameters are the closest elements to the model
structure and to the underlying modeling hypothesis in a
computerized model. The methodol ogy we are proposing for
diagnosis of modeling errorsisthen mainly based on analysis
of the model parameter space. Itsaim isto identify the ampli-
tude of variation in parameters allowing residuals observed
reduction. The comparisons of such results with the knowl-
edge we have about the actual system and about the modeling
hypothesis will help us to know the reasons for inadequate
model behavior and to propose model improvements. The
methodology involves three main steps:

1. Parameter screening and grouping. First, it alows one to
identify the parts of the mode that could redly be tested
with the available experiments (the ones related to the
activemodel parameters) and, hence, to reducethepossible
causes of discrepancies between measurements and simu-
lations. Second, it allows parameter grouping for further
estimation purposes.

2. Parameter estimations. This alows oneto identify param-
eter vectors consistent with the model structure and data.
Two different approaches are briefly presented and
discussed. The first one involves standard Monte Carlo
methods for searching the parameter vector that minimizes
a certain objective function of the error. The second one
looks for al the parameter vectors consistent with the
observed error-bounded data, that is, leading to model
outputs included in the measurements uncertainty bands.

3. Diagnosis. The possible causes of discrepancies between
measurements and simulations are elucidated here. The
comparison between the parameter valuesfrom step 2 with
their nomina values should lead to known reasons for the
observed modeling errorsand to suggested model improve-
ments.

Contrary to residual sanalysi stechniques, the approxima-
tion to modeling errors diagnosis based on parameter estima-
tions can be applied to both linear and nonlinear models. In
addition, it can supply very useful information concerning
model structurefaults. M ethods and tool sfor each one of these
task are briefly presented here.

Some Definitions and Notation

Thermal modelsfor buildingscan be usually described by
finite-dimensional models of the general form

X(t) = F(X(1), U(1), 8)
y(t, 8) = G(X(t), U(1), 8)
where X(t) isan n-dimensional vector containing the so-called
state variable, y (t,0) isag-dimensional vector including the

observation variables or outputs (for simplicity, we will
assume that g = 1 in the following), and U(t) is the inputs or
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excitations vector. 0 is the p-dimensional vector of model
parameters (geometric, optical, and thermophysical proper-
ties, convective coefficients, etc.), and F and G are two matri-
ces of time-dependent nonlinear functions. A particular model
thus corresponds to specification of functions in matrices F

and G, as well asthe parameters vector 6.

A keyword in empirical model validation is uncertainty.

Uncertainty involves measured data, model parameters, or
even the model structure:

Measurement uncertainty: Data are always associated
with some uncertainty, if only because of the finite pre-
cision of the sensors used to collect them. The approach
most commonly used to characterize such uncertainty
consists in assuming that data are corrupted by additive
random noise, whose probability density function is
known. While very popular, this approach is not immune
to criticism. The probability density function assumed
for the noise is not always based upon any sound prior
information, and one does not necessarily have enough
data to test it. Moreover, there are situations where the
main contribution to error is not of a random nature and,
therefore, not suitably described by random noise.

An attractive alternative to the stochastic characteriza-
tion of errors is characterization by upper and lower
bounds only. Measured bounded-error data at tiare

thus represented by the interval@)| =[V,in(t).Yimax(®]-

Most sensor manufacturers provide rules for computing

the maximum and minimum possible measurement errors at
any given range of operation, allowipg,(t) and y,,,(t) to be
computed. Structural errors may, however, lead one to choose
more pessimistic bounds than those obtained by this method.
These bounds can then be viewed as the extreme values of the
error between system and model outputs that are considered
acceptable by the experimenter.

Model parameter uncertainty: The uncertainty in model
parameters is generally not of a random nature. It can
reflect an imperfect knowledge of the system geometry or
even composition; the lack of measured data for parame-
ters; the uncertainty due to the finite precision of the sen-
sors and methods used for measuring system properties;
the uncertainty associated with the system exploitation,
which is generally related to unpredictable behavior of the
future users (Guyon 1997); and the imperfect knowledge
we have about the physical processes taking place in the
system.

Hence, as for data before, model parameter uncertain-
ties will be characterized by upper and lower bounds.
Let© = {6, i =1, ...,p} be thep-dimensional vector

of model parameters. Parameter uncertainty is thus
described by the intervalsZi 8, 4[6
or, in a more compact way, by

min’ emax] '

p

o= ﬂ [ei,minei,max] = [el, minel, max]x"'x[ep, minep, max]

i=1



whichisthe Cartesian product of the previouspintervals. under arithmetic operations (i.e, products, additions, etc.) in

(Normally, X would be used to describe the Cartesian the model equations.
product instead of M .) The box © will be called param- Selecting Active Model Parameters. The objective of
eters set. screening techniques is to identify model parameters to which

When checking model validity, the intervals before  the model predictions are really sensitive (active parameters).
generally represent parameter uncertainty due to the finite  All the parameters in the model can potentially affect the
precision of the sensors and methods used to estimate them.  model behavior, but generally only a small number of them are
For diagnostic purposes, they can be larger than the previous  truly important or active. The reason is that not all the parts of
ones, as they represent the domain of variation whereweare  the system are equally excited by the inputs and not all the
looking for suitable parameter values. physical processes taking place have a comparable effect on
* Model response uncertainty: Model output uncertainty the quantities to be observed. The so-called active model

results from the uncertainties of the model parameterparameters are those related to the dominant parts and
The uncertainty in the model response at timassoci-  processes in the model. It must, however, be noticed that such
ated with the parameter s8¢ can be characterized by dominances are strongly influenced by the nature of the model

the intervals inputs and the selected model outputs.
- ~ ~ The interest of screening is twofold: it allows us to iden-
[y(t, ©)] = [Ymin(t, ©), Ymax(t. ©)] , tify the part of the model that could be really validated with the
so that available experiment and, hence, to reduce the field of possi-
ble causes of discrepancies between measurements and simu-
08€0, Ymin(t, ©) < Y(t, ©) < Ymax(t, ©) lations and it allows to reduce the number of free model
parameters for further identification purposes.
A parameter vectd is said to be consistent with the Comm0n|y used Screening techniques are:
bounded-error data if it leads to model outputs included  g) pifferential analysis based on calculation of the partial
in the measurement uncertainty intervals: derivatives ofthe model outputs with respect to each parameter.

~ b) One-at-a-time design, which is an extension of the
Ot Yin(t) S Y(L, 8) < Y (D) ) g . i > .

differential analysis method. It is based on changing a single
Similarly, a parameter s€tis said to be consistent with Parameter at a time, running the model, and observing the
bounded-error dataifle 0 © the equation before is veri-OUtput variation.

fied. c) Two-level experimental designs and regression analy-
sis. Contrary to one-at-a-time design, this approach involves
The Prior Parameter Set simultaneous variations of parameters, each of them taking

|two possible levels. It allows assessment of parameter effects
by using a regression model or metamodel (Rahni 1998).
d) Group screening techniques (Walter and Piet-Lahanier

The first step in the modeling error diagnosis methodo
ogy concerns the selection of the prior parameter set,

P 1990a, 1990b; Rahni 1998) that have been proposed for
Qo = _ﬂ [8i min 8 max] screening problems involving a large number of parameters,
=1 which generally act in a sequential way. First, they combine

where B; in 8; max] represents the allowed interval of varia- individual parameters into groups and experiment with these
tion for the parameter in the model. (Norma)lg/,would be groups as individual parameters. Then, all parameters in the
used to describe the Cartesian product insteaid of .)The priopnsignificant groups are eliminated and new groups are
parameter set definition involves grouping model parameterfprmed with the remaining parameters. The procedure contin-
selecting active model parameters, quantifying active paranues until remaining parameters are few enough that we can
eter uncertainty, and testing the consistency of the resultirgnalyze them in an individual way.
parameter set with the observed bounded-error data. Quantifying Active Model Parameter Uncertainty.
Grouping Model Parameters According to Identifi-  Zero-length intervals are assigned to nonactive model param-
ability Criteria. Two parameters showing no separableeters; they are frozen to their assumed most likely values. On
effects on the model outputs (parameters strongly correlatethe contrary, interval®)[ ., 6; n,,d for active parameters must
are not identifiable separately and will thus be grouped in he wide enough so that an inadequate modeling hypothesis
unique parameter. Correlations between parameters depecaould be identified (it is expected that values for parameters
both on the model structure (the way the parameters arelated to a phenomenon that is erroneously represented in the
involved in the model) and on the model input behavior. Whilenodel change significantly when fitting the model to the data).
it is not easy to anticipate correlations induced by the modéior diagnostic purposes, the intervals describing parameter
inputs, correlations bound up with the way the parametengncertainty define the domain where we are looking for
appear in the model are usually foreseeable. The easiest capasameter values allowing reduction of model residuals. For
are those where two or more parameters are always groupestance, we assume that convective and radiative exchanges
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at the surface of a vertical wall can be represented by the
Newton law with a unique and constant coefficient of
exchange, h (Wm™2K™1). Hence, reasonable values for h
belong to [9, 10]. If, on the contrary, ajoint representation of
both kinds of phenomena is inadequate, parameter h, now
representing convective fluxes only, will take very different
values (3-4 W ™2K™1). To be able to test such a modeling
hypothesis, a[3, 10] interval for h isrequired.

Preliminary Consistency Analysis. Parameter set
consistency analysis involves two main tasks: estimating
model output uncertainties associated with the parameter set
under analysis (they are a measure of the influence of param-
eter uncertainty on model outputs) and testing consistency by
comparisons between model output uncertainties and
bounded-error data. If most of the time measurement uncer-
tainty bandslie between the estimated upper and lower bounds
for model outputs, the parameter set ©, hopeful includes
parameter vectors, leading to good enough model behavior.
No changes are a priori required, and parameter estimations
can be carried out.

The most commonly used techniques for model output
uncertainty calculations are differential sensitivity analysis
and Monte Carlo methods. See Lomas and Eppel (1992) and
Palomo (1994) for an analysis of their corresponding advan-
tages and drawbacks. New techniques allowing a strong
reduction of the required computation time have been recently
proposed (Palomo and Guyon 1998).

Parameter Estimations

The main tool that we are proposing to guide modeling
error diagnosisishbased on parameter estimation techniques. I
something in the model is clearly wrong, one would expect to
find large parameter displacements when fitting the model on
the measured data. The comparison between the estimated
parameter values and their nominal values should lead to
known reasons for the observed modeling errors and to
suggest model improvements.

Problem Satement. The estimation problem can be
stated in two different ways depending on the assumptions
adopted concerning measured data.

* First statement. It assumes errorless data. Let

e(t, 8) = y(t) - y(t,6)

be the residuals associated to the parameter v@ctar
let

N
VAe) = 5 €t 0)
t=1

»  Second statement. Contrary to the previous one, it takes
into account data uncertainty. The problem is no longer
stated as “looking foe* 0 ® that minimizes an objec-
tive function measuring the simulation error.” Instead,
we are looking for alb 0 @ providing simulation inside
the uncertainty intervals of the measurements. In other
words, we are looking foral 0 ©®  so that

Ot Y(t,8) O [Ymin() Yimax(] -

Parameter Estimation M ethods. Historically, methods
to solve global optimization problems have been classified as
either stochastic or deterministic. Stochastic methods evaluate
the objective function at randomly sampled points from the
parameter region of allowed variation. Deterministic meth-
ods, on the other hand, involve no elements of randomness.

All global optimization algorithms can also be partitioned
into two classes—reliable and unreliable. Clearly, all stochas-
tic methods, including simulated annealing, clustering, and
random search, fall into the unreliable category. In fairness,
however, efficiency is the strength of such methods. For now,
large-scale problems may best be solved stochastically.

The class of deterministic algorithms, including branch
and bound methods, covering methods, interval methods,
tunneling, and enumerating, can be further partitioned into
two categories—methods that compute objective function
values at sampled points (point methods) and methods that
compute function bounds over compact sets (bounding meth-
ods). This division further separates reliable from unreliable
methods. Point methods are inherently incapable of reliably
solving the global optimization problem. On the other hand,
bounding methods, if properly implemented, can produce
rigorous global optimization solutions.

Two different kinds of global optimization methods
(GOM) have been implemented and tested in the framework
of a project led by an international organization dealing with
energy savings and model validation tools:

» First GOM. Two random search algorithms, a pure ran-
dom one and a multistart algorithm, are used in associa-
tion with the first statement of the minimization
problem.

The pure random algorithm evaluates the objective func-
tion V(B) atn randomly sampled poin0© Vy, V,, ...,V,,.

The solution we are looking for is then estimatef*aso that

V(0)* = min(Vy, Vs, ..., V).

,and The multistart random search algorithm is a natural exten-

sion of the previous one. A numbresf starting points belong-
ing to © are selected at random®%};_; ,, and a random
search algorithm for local optimization is applied from each
one of these points. The set of all terminating points (local
extrema, §'};_; ) hopeful includes the global minimudh,

be a quadratic measure of it. We are looking for thevhich is estimated && = arg min{/(6"1),V(6"?), ...,V(8'™").

paramete®* 0 © that minimize the objective functi¢f).

As we said before, although unreliable, such methods are

Solving such a problem means finding the global minimum, iespecially efficient for large-scale optimization problems.

it exists, of a generally complicated non-convex real-valued

function.
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Second GOM. A reliable bounding method was devel-
oped in association with the second statement of the



optimization problem. A survey of techniques for esti-
mating parameters from error-bound data can be found
in Walter and Piet-Lahanier 1990a). Recently, new tech-
niques, also allowing nonconnected parameters, are pro-
posed in Walter and Piet-Lahanier (1990b), Moore
(1992), and Jaulin and Walter (1993). The algorithm we
have developed takes inspiration from the ones pro-
posed in Moore (1992) and Jaulin and Walter (1993). It
allows exploration of disconnected subsetsin © inasys-
tematic way. It proceeds by deleting parts of the initial
parameter set ©, which cannot contain feasible parame-
ter vectors, leaving a list of subsets whose union still
contains the set of all feasible parameters. Such alist of
subsets in the algorithm is technically a queue. At itera-
tion k, the algorithm performs as follows:

1. Unlistthefirstbox @® inthequeueand bisectitinthecoor-
dinate direction of maximum with o = O(lk)D O(zk) .

2. Test e(lk) consistency; if consistent, save it as making part
of the global solution; if inconsistent, delete it; otherwise
list O(lk at the end of the queue.

3. Test G)(Zk) consistency; if consistent, save it as making part
of the global solution; if inconsistent, delete it; otherwise
list e(zk at the end of the queue.

As a result, the widest box remaining in the queue is
alwaysthefirst one. If it is narrower than the prescribed toler-
ance, then so are al the rest and the iteration loop is termi-
nated. We note ©* the parameter subset including solutions.

We remember that consistency analysisof parameter sets
(subsets), ©, involves (a) calculation of the upper and lower
bounds for the model outputs, [y(t, ®)], and (b) comparison
with bounded-error data, [y(t, ®)] . The parameter set © is
consistent with data when Ot [y(t,®) Oy(t,0©)]; it is
inconsistent if (@ sothat [y(t,®)]ny(t, ®)] = O; otherwise,
itissaid to be ambiguous.

The methods allowing model output bounds estimations
without code modifications that are commonly used (Monte
Carlo methods and differential sensitivity analysis tech-
nigues) make the parameter estimation method unusable due
to the computing time required. Specia techniques, such as
the one proposed in Palomo and Guyon (1998), that takeinspi-
ration from interval arithmetic are thus required.

Advantages and Drawbacks. The main advantages of
the second GOM method are related to both the nature of the
data and the nature of the models.

1. The method takesinto account data uncertainty, aswel as
their nonrandom nature. Stating the problem aslooking for
8" 0O that minimizes an objective function implies the
assumption of uncorrupted data.

2. It dlows nonconnected parameter set identification.
Dynamic thermal models are based on differential equa-
tions whose outputs are nonlinear in their parameters, even
if themode itsdlf islinear. One of the major consequences
of this nonlinearity isthat ©~'may no longer be connected.
Thismay result from the fact that the model is not uniquely

identifiablebut may also bedueto other factorsnot so easily
detected (Pdomo and Guyon 1998). This is especidly
important when the parametersto be estimated have aphys-
ical meaning or when decisions have to taken on the basis
of their numerical vaues, as it is the case for diagnostic
purposes.

Others advantages are:

No additional work is required for estimating the uncer-
tainty regionsfor theidentified parameters; they come natu-
rally from the procedure itself.

Thesolution proposed by the algorithm alwaysincludesthe
optimal parameter vector (reliable method). On the
contrary, when using Monte Carlo methods, we are never
sure of getting it. The quality of the proposed solution from
Monte Carlo methods is measured in terms of probability.

Concerning stochastic methods, their main advantage is

efficiency. For now, large-scale (in parameters) problems may
best be solved stochastically.

Diagnostic

The last step in the methodology is diagnosis. It is based

on the following.

A certain knowledge about the model. Which phenom-

ena are represented in the model and what parameters
are involved in their representation is the main informa-
tion required.

Modeling hypothesis formalization and analysis. It
involves a strictly structured way of stating modeling
hypotheses, as well as some analysis concerning the
consequences in terms of model parameters that inade-
guate hypotheses provoke. This means to determine
foreseeable model parameter sets for each one of the
hypotheses in the model, as well as for their correspond-
ing negative statement. As, unfortunately, no rigorous
methods exist at present, the modeling hypothesis analy-
sis will be founded on the expert knowledge the modeler
has on both the system and the model itself. This
method could be simple and economic, but it is prone to
large personal biases.

Parameter displacement analysis. This involves compar-
isons between estimated and nominal model parameter
values. Large differences are expected for parameters
involved in phenomena that are not correctly repre-
sented in the model.

The combination of these elements of judgment should

lead one to know reasons for the observed modeling errors and
to suggest model improvements.

EXAMPLE OF APPLICATION

The methodology presented in the previous section is

here applied to diagnose modeling errors in an actual building.
The experimental device is shortly described in first subsec-
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tion. The second subsection includes the test cell model
description, with special attention on the modeling hypothe-
sis. Resultsfrom ablind model validationarebriefly discussed
in the third subsection. The next subsections are focused on
model parameter estimations and diagnosis.

Description of Empirical Validation Experiment
An experiment (Girault and Delille 1995) has been

carried outintest cells(seeFigure 1) to measurethedifference  *

between arealistic convector, located under a window, with-
out stirring of the internal air, and a purely convective heat
sourcein the center of theroom, with stirring of air (when the
sourceison). Theexperiment wasin anatura climate, i.e., the
south wall was exposed to solar radiation and the others
surfaces were connected to guard zones. In the REFERENCE
cell, therewasapurely convective heater, whichisclosetothe
modeling used in most software programs. Inthe MEASURE

cell, aclassical electrical convector commonly usedinFrance  °

islocated under the south window. The aim isto compare the
effect of energy distribution on the air temperature in the
center of theroom for therealistic convector and the academic
source with stirring. The experiment began on February 25,
1995 and finished on March 19, 1995. During thisexperiment,
the cell configuration was as follows: guard temperatures
controlled at 10°C (50°F), no air infiltration, pseudo-random

heating at a nominal value of 500 W, a black screen installed
behind the window in the guard zone to obtain a temperature
for longwave radiation identical to the guard temperature. For
the REFERENCE cell, the air inside the test cell was stirred
using a fan to guarantee temperature homogenization and the
heating is done by a convective heater (heating fan). For the
MEASURE cell, the air inside the test cell was not stirred, and
the heating is done by a classic electrical convector (the most

common type of heater used in France).

The following variables were recorded: global ande

diffuse solar radiation, outdoor dry-bulb temperature, air

temperature in the thermal guards, heating power, and indoor
air and radiant temperature. All data were measured at a five-
minute time step, except solar radiation, which was measured

Figurel Experimental sequencein test cells.
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at a one-minute time step. The data were then averaged and
undersampled at a one-hour time step. The analysis in this
section refers to the REFERENCE cell only.

The Test Cell Thermal Model

The main hypotheses in the test cell model are classified

by physical phenomena as follows:

Hypothesis 1, heat conduction phenomena. H1.1 Heat
conduction is considered as one-dimensional; thermal
bridges are not modeled. An equivalent homogeneous
multilayer wall is used for representing the floor and the
ceiling. H1.2 Constant thermophysical properties are
assumed for all the material$11.3 Perfect contact
between layers is assume#ll.4 Heat conduction
through the glazing and frameworks is assumed nonca-
pacitive.

Hypothesis2, thermal infrared radiation (TIR) exchanges

and heat convective exchanges at the outdoor wall-air
interfaces. H2.1 TIR exchanges are not explicitly mod-
eled. The convective-radiative flux at #ik wall surface

is estimated ag® = h®(TM_ ... — T,,) whereh® is a
constant exchange parameter taking into account both
radiative and convective exchange.2 Standard val-
ues are adopted for the global exchange pararheter
Hypothesis 3, TIRexchanges and heat convective
exchanges at the indoor wall-air interfaces. H3.1 TIR
exchanges are explicitly modeled, although linearized.
All the surfaces are assumed to be gray, with emissivity
values equal to 0.9. The reference temperature for lin-
earization is 280 KH3.2 Convective heat exchanges at
the wall-air interfaces are estimated by means of the
Newton law.H3.3 Standard values are adopted for the
exchange convective parameher

Hypothesis 4, indoor air and heating power treatment.

H4.1 Indoor air temperature is supposed to be homoge-
neous. The air is represented by a single node in the
model. H4.2 Air infiltration is assumed to be zero.
H4.3 The output from the heater is assumed 100% con-

_m_ Natural climate

—/
classical
convector

— black
1 screen

Toc

Reference cell

Academic convective
source (SO0W)

Measure cell
Convector

(500W)



vective. The electrical heating power is transmitted to 2. convective parameters (7) could be used to test the hypoth-
the indoor air node. H4.4 The heater inertia is esis concerning heat exchanges at the wall-air interfaces,
neglected. the pertinence of using the Newton law for representing

them (H3.1), and the validity of the assumed French stan-

irradiance on the vertical south facade of the test cell is dard values for the corresponding exchange coefficients

calculated from the available horizontal global and dif- (H2.2 and H3.3);

fuse irradiance data. Diffuse solar radiation is assumed. thermophysical parameters (34) can eventually be used, as

to be isotrope, and the soil reflectivity is supposed to be ~ Well as the indoor surface areas, to test the hypothesis

0.2.H5.2 For transmitted solar flux through glazing cal- ~ concerning heat conduction phenomena, mainly hypothesis

culations, no distinction is made between global and dif-  H1.1;

fuse radiation. Window mask effects are, howeverd. finally, heating coefficients (radiative/convective ratio for

explicitly modeledH5.3 Constant optical properties for the heater) could be used to test hypothesis H4.3.

windows and walls are assumédl5.4 Incoming solar

radiation is distributed among the wall indoor surface$lind Model Validation

acgording to absorptgn_ce Weighted ratios. The fraction  gimylations were performed using the model

of incoming solar radiation that is absorbed by any surgescrived above and the results were compared with

face k is aA(Zi(1 — p)A)™, whereay is the solar  measurements (Moinard et al. 1998). Residuals are defined

absorptance of the surface gndts reflectance. as the difference between measurements and simulations,

et) = Ymeasured® — Ysmuiated(®)- We will focus our atten-

The model includes nine input variables and eightion on indoor air temperature predictions. Looking at the
outputs. Input variables to the model are the outdoor aiesiduals time behavior (Figure 2, left) it can be seen that
temperature, the horizontal global solar irradiance, the horthe model is not able to reproduce the static behavior of
zontal diffuse solar irradiance, the air temperature in the thethe test cell. The indoor air temperature is clearly overesti-
mal guards (five inputs), and the heating power. The outpuhated. The mean value of the corresponding residuals is
variables are the indoor air temperature, the indoor mean radiet satisfactory at all 0.38°C). Similarly, the model
ant temperature, and the wall surfaces temperatures (six vashows a poor dynamic behavior, the main problems
ables). appearing at low frequencies (nonstationary behavior of

The model includes 110 potential free parameterst.he residuals). Residuals yariance is 0'330(: .
However, they can be reduced to 59 after grouping them The analysis of the residuals normalized cumulative spec-
according to identification criteria. As the objective of modeitrum (Figure 2, right) confirms these conclusions. It can be

parameter identification is modeling error diagnostics, it musgasily seen that most of the res@uals variance 1S cpncentrated
be noticed that at low frequencies. The modeling error diagnostic method

proposed in Palomo et al. (1991) is now applied. Because

1. optical parameters (17) could serve to test the hypothesisodel simulation aims at reproducing the effect of the external
directly related to the solar radiation processor, mainly thnfluences that drive the experiment, one expects a part of the
one concerning the incoming solar radiation distributiorresiduals to be sensitive to these inputs. Hence, the proposed

e Hypothesis 5, solar radiation processor. H5.1 Solar

(H4.4); technique seeks to quantify the contribution of each input to
15[ Residuals (C) ' ' ' 1 ; ; T
i Residuallcumulative spectrum
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Figure2 Residualsfromthe nominal model (left) and cumulative spectrum (right).
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the residuals. Such information helps modelers to sort the
inputsand to target the one responsi ble of the major part of the
error. Efforts to improve the model should then focus on the
way the model takes into account this particular input.

Thecontribution of eachinput to theresidualsisanalyzed
by means of the sguared partial coherence functions. The
squared partial coherence for the ith input is a normalized
measure at frequency of the linear cross-correlation existing
between residuals and input i after allowance is made for the
effect of the other input variables. It takes valuesfrom 0 to 1.
Zero values mean that no correlation exists between the ith
input and the residual s, unity values mean that residual s could
be completely recovered from this input, and values between
0 and 1 correspond to situations where residuals can be
partially predicted from theith input. Figure 3 showsthe esti-
mated squared multiple and partial coherences for the indoor
air temperature residuals. It can be seen that

« high values for the squared multiple coherency ar
obtained all over the frequency interval—this mean
that no strong structural modifications of the model will

be required to improved it;

(Palomo and Guyon 1998). Its aim is to identify the amplitude
of variation in parameters allowing observed reduction of
residuals. The comparisons of such results with the knowledge
we have about the actual system and about the modeling
hypothesis will help us to know the reasons for inadequate
model behavior and to propose model improvements. Param-
eter estimations involve selecting an acceptable prior param-
eter setP,,; looking for parameter vectors consistent with the
model structure and the data; and comparing results from the
previous step with the assumed nominal values for the model
parameters (diagnosis).

Prior Model Parameters Set. Two criteria have been
used to select free model parameters. Free model parameters
are those to which is associated a greater uncertainty (i.e.,
because related to critical modeling hypothesis) and the ones
suggested by the previous residuals analysis (optical parame-
ters). Resulting free model parameters are (a) the convective
exchange coefficients (seven parameters), which allow one to
Sest the pertinence of modeling hypotheses H2.2, H3.1, and

3-13.3; (b) the optical properties of glazing and wall surfaces

(six parameters) that mainly allow one to test hypothesis H4.4;

._and (c) all the thermophysical properties (34 parameters). The

*  the heating power is the input responsible for the majoﬂnsatisfactory static behavior of the model could come both

part of the error, but no conclusions on how to improv
can be obtained from this observatio
because there are many possible sources of error in t

the model

8rom the existence of unmodeled thermal bridges or from erro-

eous nominal values for the thermophysical parameters (it
st be noted that they have not been measured but taken from

model that could provoke strong correlations betweerfhe literature). Estimations of thermophysical parameters can

the residuals and the heating power;

* some correlation is also detected with the solar radiatio
data—it seems clear that improving the solar radiatio
processor could lead to some improvement in mod

behavior.

Model Parameter Space Analysis

give some elements of judgments in this respect. For instance,
clear augmentation of the conductivity and thermal capacity
rQfalues could be generally interpreted as the existence of the

&nmodeled thermal bridges. On the other hand, an erratic

modification of such parameters will lead one to conclude
otherwise. The prior parameter &jfis then formed by 110
parameters; 63 of them are frozen to their nominal values, and

The methodology for modeling error diagnosis based ofhe uncertainty associated to the remaining ones (47) is
the analysis of the model parameter space is here appligdscribed by intervals whose length is chosen large enough so

Soectral coherencv
T

0.9
0.81
0.7 = Multiole
0.6F ~~~ Temoerature
i T/ Solar radiation
05 —Heatina bower

0.2 0.3 0.4 0.5
Normalised freauencv

Figure3 Sguared multiple and partial coherences.
Residuals analysis of the nominal model.

SE-99-06-03

that critical modeling hypothesis can be tested. For instance,
we will say that hypothesis H1 does not hold when large
displacements in thermophysical parameters were required
for model residual reduction.

Preliminary Consistency Analysis. The model output
uncertainty due to the model parameter uncertainty described
by ©, has been calculated by a standard Monte Carlo proce-
dure. It must be noted that the parameter intervadg itho not
represent parameter uncertainty due to the finite precision of
the sensors and methods used to estimate them. Hence, the
estimated model response uncertainty has nothing to do with
the model precision. For diagnostic purposes, the intervals
describing parameter uncertainty must be large enough so that
critical modeling hypotheses can be tested. They define the
parameter domain where we are looking for parameter values
allowing model residual reduction. Consequently, it is not
uncommon to get very large intervals for the model output
uncertainty description. As can be seen in Figure 4 (left), most
of the time measurements lie between the estimated upper and
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Figure4 Model output uncertainty bands (left) and residuals from the fitted model (right).

lower bounds for model outputs. The parameter set ©, hope-
fully includes parameter vectors leading to good enough
model behavior. No changes are a priori required.

include thermal bridges in the model and use two-
dimensional representations, if possible;

review French standards for convective coefficients,

Approximate Optimal Parameter Vector and Diag-
nosis. The parameter vector 8* that minimizesthe variance of
theindoor air temperature residual s has been estimated by the
multistart random search algorithm described in Palomo and
Guyon (1998). Resultsareincluded in Tables 1 to 4. Thethird
columninthesetablesisgivenby (6, ,- eix)efloloo %. Figure
4 (right) shows the time behavior of the indoor air tempera-
ture residual s associated with the fitted model. It can be seen

introducing air velocity influence;

» review solar radiation processor, mainly incoming solar
radiation distribution hypothesis.

Diagnosis Confirmation. The previous steps are
repeated using another prior parameter set. The objective of
this analysis is to get more confidence in the prior conclusions,
that the identified model reproduces quite well the static ~ especially with respect to thermal bridge effects. Hence, to the
behavior of the indoor air temperature (residuals meanvalue  free model parameter set in the previous analysis, we add wall
less than 0.1°C). It also shows a general dynamic behavisurface areas. If the effect of thermal bridges is really signif-
that is better than the one exhibit by the nominal modelicant, it is expected that the wall surface area strongly
Residuals variance is 0.15*@nd low-frequency trends are increases when fitting the model on the measurements.
damped out. Because they are more directly related to thermal bridges than

The main differences observed between the identifieéhermophysical properties, no special trends are now expected
parameter vector and the nominal one are the following:  in conductivities and heat capacity values. The resulting fitted

a) Indoor convective coefficients for the floor and theModel shows similar performance to the previous one. The

ceiling increase; their values are close to the ones of the indotimated convective and the optical parameters show the

vertical walls. Taking into account that the air in the cell isS@Me kind of trends as in the previous analysis. An erratic
stirred. this could be considered a reasonable result. behavior is now observed in significant conductivity and ther-

. . . mal capacities values. However, a clear augmentation of the
b) Outdoor convective coefficients for vertical walls are . .
vi/all surface area appears. The nominal value for the indoor

Increasing too. Taklng Into aCCOL.mt that the arin the therm"%est cell area is 79.8%mand the identified one is 85.&rThis
guards is removed with a fan, this result is also quite reason:

able clearly suggests the presence of unmodeled thermal bridges.

o .. Parameter estimations have also been performed, leaving only
¢) Solar absorptivity values are strongly reduced, indicatgynyective and optical parameters as free model parameters.

ing that the hypothesis concerning the incoming solar radiarye jgentified values show the same displacements against
tion distribution must probably be reviewed. nominal values as in the previous cases. However, the fitted
d) A clear general augmentation for conductivity valuesnodel now shows poor static and dynamic behaviors. The
is observed, as well as for thermal capacities. major handicap of the nominal model, which concerns its
As we have noted before, such trends could be explainathacceptable static behavior, can not be explained by errors in
by the presence of unmodeled thermal bridges. Hence, clearodeling convective exchanges or by faults in the solar
suggestions for model improvement are to processor.
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TABLE 1 TABLE 2
Convective Coefficient Values Solar Absorptivity(a) and

— Transmissivity (1) Values
Results of parameter estimation method
Convective coefficients values (W/m?K) Results of parameter estimation method
Identified Initial value | Variation(%) Solar absor ptivity () and transmittivity
Indoor vertical 511 41 -246 (1) values
Outdoor vertical 10.65 91 ~170 Identified Initial value | Variation(%)
Wind exposed 13.03 166 +215 T Glazing 0.77 0.675 ~134
Indoor floor 477 0.9 —430.5 AGlazing 011 0.13 132
Outdoor floor 6.77 59 -148 OEast 0.322 0.9 642
Indoor ceiling 116 6.1 +80.9 aNorth 0434 09 518
Outdoor ceiling 10.81 11 +2.6 GrWest 0.834 0.9 74
o South 0.676 0.9 +24.9
aFloor 0.467 0.9 +48.1
o' West window 0.321 0.9 +64.3
TABLE 3 TABLE 4
Thermal Capacity Values Thermal Conductivities
Results of parameter estimation method Results of parameter estimation method
Thermal capacity values (J/kgK) Thermal conductivities (W/m[K)
Identified Initial value | Variation(%) Identified Initial value | Variation(%)
Wallpaper 1033.8 938.0 -10.2 Weallpaper 0.168 0.14 -19.7
Plasterboard 557.8 680.0 +17.9 Plasterboard 0.382 0.35 -9.2
Polyestyrene 20.91 18.0 -16.1 Polyestyrene 0.0387 0.043 +9.9
Air layer 151 1.30 -16.2 Air layer 0.0673 0.071 +5.1
Hollow blocks 1304.4 1140.0 -14.4 Hollow blocks 1.051 1.052 +0.1
Concrete 1828.3 1957.0 +6.6 Concrete 152 1.39 -9.7
Styrodur 49.39 42.0 -17.6 Styrodur 0.0333 0.029 -14.7
Polyamide 1242.8 1200.0 -35 Polyamide 0.278 0.3 +7.2
Floor eq. layer 1833.1 1695.1 -8.1 Floor eq. layer 0.0402 0.0467 +14.0
Honeycomb 30.59 34.90 +12.3 Honeycomb 0.326 0.287 -13.6
Facing 1610.6 1657.5 +2.8 Facing 1.207 115 -5.0
Glass wool 9.82 8.80 -115 Glass wool 0.0445 0.042 -5.9
Planks 551.47 600.0 +8.1 Planks 0.168 0.15 -121
Particleboards 879.56 840.0 -4.7 Particleboards 0.196 0.17 -15.3
Air layer in ceiling 1.04 124 +15.9 Air layer in ceiling 0.913 0.846 -8.0
Hollow door 297.83 275.0 -83 Hollow door 0.106 0.09 -17.8
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CONCLUSIONS

Residuals analysis shows that the major handicaps of the
proposed test cell model are unacceptabl e static model behav-
ior (temperatures are systematically overestimated) and poor
dynamic behavior at |ow frequencies, the most important ones
in building thermal analysis. It identifies heating power asthe
model input responsible for the major part of the observed
differences between measurements and simulations.
However, no conclusionson how to improve the model can be
obtained from this observation because there are many possi-
ble sources of error in the model that could provoke strong
correlations between the residuals and the heating power.

On the other hand, analysis of the model parameter space
allows a better understanding of the possible causes for the
residuals observed. It shows that the main differences
observed between measurements and simulations can be
explained by unmodeled thermal bridges, the adopted French
standard for convective coefficients, and the modeling
hypothesis concerning incoming solar radiation distribution.
Parameter estimation techniques seems to be a useful and
powerful tool for diagnosis.

ACKNOWLEDGMENTS

The authors would like to thank everyone who made this
work possible, especialy Mr. P. Dalicieux, who started this
validation work at the French utility company, and Mr. P,
Girault (EDF/DER), who carried out experiments in ETNA
test cells.

REFERENCES

Candau, Y., and G Piar. 1993. An application of spectral
decomposition to model validation in building thermal
analysis. Int. J. of Heat and Mass Transfer, (3) 645-650.

EDF/DER. 1998. Catal ogue des types formels de CLIM2000,
v 2.4, EDF.

EDF/DER. 1997. Manuel utilisateur de CA-SS3.0, EDF.

Girault, P, and S. Delille. 1995. Description of ETNA Cells,
Physical and geometrical configuration. EDF report HE-
14/95/053.

Guyon, G. 1997. Role of the model user in results obtained
from simulation software program. Proc. Building Smu-
lation 97, Prague, Czech Republic.

Jaulin, L., and E. Walter. 1993. Guaranteed nonlinear param-
eter estimation from bounded-error data via intervals
analysis. Mathematics and Computer in Smulations,
(2)123-137.

Jensen, S.O. 1993. Model validation and development. In
Research Final Report, PASSY S: Part 11, Commission of
the European Communities DGXII.

Klein, T., and W.A. Beckman. 1986. TRNSYSv 14.2: Tran-
sient systems simulation program, SEL. University of
Wisconsin, Madison.

Lomas, K.J., and H. Eppel. 1992. Sensitivity analysis tech-
niquesfor building thermal simulation programs. Energy
and Buildings, (19):21-44.

12

Martin, C.J., and D.M.J. Watson. 1993. Empirical validation
of the model SERI-RES using data from test rooms.
Building and Environment, (2) 175-187.

Moinard, S., G. Guyon, and N. Ramdani. 1998. Comparison
between EDF ETNA and GENEC test-cells developed
with AxBU, APACHE, CA-SIS, CLIM2000, DOE-2,
SERI-RES, M2M, IDA and PROMETHEUS. |EA Task
22 Report.

Moore, R. 1992. Parameters sets from bounded-error data.
Mathematics and Computer in Smulations, 7(34):113-
119.

Palomo, E., J. Marco, and H. Madsen. 1991. Methodsto com-
pare measurements and simulations. In Proc. IBPSA'91
Building Simulation Conference, Sophia-Antipolis, Nice,
France

Palomo, E. 1994. Empirical whole model validation environ-
ment. Statistical evaluation methods. In, ed. S.O. Jensen,
Validation of Building Simulation Programs, Part I1.
EUR-15116-EN, European Commision, DGXII.

Palomo, E., and G. Guyon. 1998. Application of parameters
identification techniques to models errors diagnosis in
building thermal analysis. |EA Task 22 Report, to be pub-
lished.

Rahni, N. 1998. Validation des modeles et variabilité des
parametres: Analyse de sensibilité et d'incertitude - Pro-
cedures d'optimisation, application a des modeéles de ther-
mique du batiment. Ph.D. thesis, Paris XII Univ., France.

Ramdani, N. 1994. Validation expérimentale et analyse des
signaux: Développement d'une méthodologie de com-
paraison modéle/mesures en thermique du batiment.
Ph.D. thesis, Paris XIlI Univ., France.

Ramdani, N., Y. Candau, S. Dautin, S. Delille, N. Rahni, and
P. Dalicieux. 1997. How to improve building thermal
simulation programs by use of spectral analysi®rgy
and Buildings, 25: 223-242.

Tabary, L., and N. Ramdani. 1995. An error analysis method
applied to a building simulation software: An example of
applications and its resulfroc. Building Smulation 95,
Madison, Wisc., USA.

Walter, E., and H. Piet-Lahanier. 1990a. Estimation of param-
eters bounds from bounded-error data: A surMathe-
matics and Computer in Smulations, (32):449-468.

Walter, E, and H. Piet-Lahanier. 1990b. Characterization of
non-connected parameter uncertainty regidviathe-
matics and Computer in Smulations, (32):553-560.

SE-99-06-03



	ashrae.pdf
	TABLE OF CONTENTS
	NAVIGATION SCREEN
	ABSTRACT
	INTRODUCTION
	STATE OF THE ART
	MODELING ERRORS DIAGNOSIS VIA MODEL PARAMETERS SPACE ANALYSIS
	EXAMPLE OF APPLICATION
	Figure 1 Experimental sequence in test cells.
	Figure 2 Residuals from the nominal model (left) and cumulative spectrum (right).
	Figure 3 Squared multiple and partial coherences. Residuals analysis of the nominal model.
	Figure 4 Model output uncertainty bands (left) and residuals from the fitted model (right).
	TABLE 1� Convective Coefficient Values
	TABLE 2� Solar Absorptivity(a) and Transmissivity (t) Values
	TABLE 3� Thermal Capacity Values
	TABLE 4� Thermal Conductivities
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES




